The contribution of the present paper is twofold. First, we show that in a situation where agents can only observe a noisy signal of the shock to future economic fundamentals, the “noisy news”, SVAR models can still be successfully employed to estimate the shock and the associated impulse response functions. Identification is reached by means of dynamic rotations of the reduced form residuals. Second, we use our identification approach to investigate the role of noise and news as sources of business cycle fluctuations. We find that noise shocks, the component of the signal unrelated to economic fundamentals, generate hump-shaped responses of GDP, consumption and investment and account for a third of their variance. Moreover, news and noise together account for more than half of the fluctuations in GDP, consumption and investment.
Forni, M., L., Gambetti, M., Lippi e L., Sala. "Noisy News in Business Cycles" Working paper, RECENT WORKING PAPER SERIES, Dipartimento di Economia Marco Biagi – Università di Modena e Reggio Emilia, 2014.
Noisy News in Business Cycles
Forni, M.;Gambetti, L.;
2014
Abstract
The contribution of the present paper is twofold. First, we show that in a situation where agents can only observe a noisy signal of the shock to future economic fundamentals, the “noisy news”, SVAR models can still be successfully employed to estimate the shock and the associated impulse response functions. Identification is reached by means of dynamic rotations of the reduced form residuals. Second, we use our identification approach to investigate the role of noise and news as sources of business cycle fluctuations. We find that noise shocks, the component of the signal unrelated to economic fundamentals, generate hump-shaped responses of GDP, consumption and investment and account for a third of their variance. Moreover, news and noise together account for more than half of the fluctuations in GDP, consumption and investment.File | Dimensione | Formato | |
---|---|---|---|
RECent-wp97.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
3.31 MB
Formato
Adobe PDF
|
3.31 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris