We study the asymptotic behaviour of positive groundstate solutions to the quasilinear elliptic equation [Figure not available: see fulltext.]where 1 < p< N, p< q< l< + ∞ and ε> 0 is a small parameter. For ε→ 0 , we give a characterization of asymptotic regimes as a function of the parameters q, l and N. In particular, we show that the behaviour of the groundstates is sensitive to whether q is less than, equal to, or greater than the critical Sobolev exponent p∗:=pNN-p.

Groundstate asymptotics for a class of singularly perturbed p-Laplacian problems in RN / Albalawi, W.; Mercuri, C.; Moroz, V.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 199:1(2020), pp. 23-63. [10.1007/s10231-019-00865-6]

Groundstate asymptotics for a class of singularly perturbed p-Laplacian problems in RN

Mercuri C.;
2020

Abstract

We study the asymptotic behaviour of positive groundstate solutions to the quasilinear elliptic equation [Figure not available: see fulltext.]where 1 < p< N, p< q< l< + ∞ and ε> 0 is a small parameter. For ε→ 0 , we give a characterization of asymptotic regimes as a function of the parameters q, l and N. In particular, we show that the behaviour of the groundstates is sensitive to whether q is less than, equal to, or greater than the critical Sobolev exponent p∗:=pNN-p.
2020
199
1
23
63
Groundstate asymptotics for a class of singularly perturbed p-Laplacian problems in RN / Albalawi, W.; Mercuri, C.; Moroz, V.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 199:1(2020), pp. 23-63. [10.1007/s10231-019-00865-6]
Albalawi, W.; Mercuri, C.; Moroz, V.
File in questo prodotto:
File Dimensione Formato  
s10231-019-00865-6.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 629.96 kB
Formato Adobe PDF
629.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1292209
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact