The goal of this PhD thesis is to explore the lithological heterogeneity of the suboceanic mantle sourcing the Mid Ocean Ridge Basalts (MORB). Even though the heterogeneity of the mantle has been demonstrated to vary at short, kilometric scale, the composition of the basalts erupted at a single ridge axis segment usually appears relatively homogeneous. This apparent paradox is due to the relatively high degree of mantle partial melting that averages the different lithological contribution to the pooled melt, smoothing out the original variability. A way to separate the single lithological contributions is to explore the compositional variation of melts extracted from a composed mantle source that melts at different potential temperatures. Decreasing temperatures results in the preferential melting of low-solidus lithologies because of heat drained from the high-solidus components during melting. Sampling MORBs along lateral thermal gradients is therefore a promising way to collect separately the melt contributions from different lithologies. Thermal gradients large enough to affect the melting region at the ridge axis scale can be generated by cooling edge effects where the ridge axis faces the transform fault. The cold-edge effect is usually restricted to a few km-wide region. Here I study the eastern intersection of the Romanche Transform Fault (RTF) with the Mid-Atlantic Ridge (MAR) axis in the Equatorial Atlantic Ocean. The RTF is the largest transform on Earth (950 km). It puts an old, cold and thick lithosphere (40 Ma) directly in contact with the tip of the axial segments of the MAR. This geometry results in a large lateral thermal gradient, reaching >50 km away from the transform and gives rise to peculiar tectonics and magmatism. I studied a set of basaltic glasses, sampled along the MAR axis approaching the RTF during the PRIMAR expeditions and the SMARTIES 2019 oceanographic expedition, to which I took part. More than 180 samples have been studied for major and trace element compositions (EMPA and LA-ICP-MS) and Pb, Sr, Nd and Hf isotope ratios separated by chromatographic methods and measured by TIMS and HR-MC-ICP-MS. These MORBs show an unusual high content of K2O and Na2O, respectively up to 1.95 wt% and 4.45 wt%, plotting across the subalkaline/alkaline boundary. Overall, they vary from transitional- to highly enriched MORBs. Their compositions strictly depend on the local mantle temperature. In the colder section, both major and trace element compositions are very heterogeneous, while samples located from hotter sections have a homogeneous normal-MORB compositional patterns. The isotopic variability in the region (87Sr/86Sr from 0.702398 to 0.703919, 206Pb/204Pb from 18.49 to 19.7, ɛNd from 2.18 to 11.52, ɛHf from -2.88 to 23.73) covers almost the whole variability observed along the MAR, including axis portions showing ridge-hotspot interactions. Explaining the observed variability requires mixing various amounts of at least three different components in addition to the depleted MORB mantle. The first, an ultra-depleted melt signature, witnesses for the involvement of a mantle component recording a very ancient depletion event (Ga). The second, a HIMU-type signature linked to the recycling of a very old oceanic crust, and the third, derived from continental material, are evidence for deep ancient mantle processes. A group of samples shows peculiar compositions, with marked Eu and Sr positive anomalies and homogeneous DMM-type isotopic signatures. These MORBs are proposed to result from partial melting of shallow mantle portions, previously impregnated in the plagioclase stability field, during the relocation of the spreading axis in oscillatory Core Complex tectonics.

Questa tesi esplora l'eterogeneità litologica del mantello suboceanico sorgente dei basalti eruttati lungo la Dorsale Medio-Oceanica (MORB). Sebbene l'eterogeneità del mantello vari a scala chilometrica, la composizione dei basalti eruttati all'asse della dorsale è in genere relativamente costante. Questo apparente paradosso deriva dall’alto grado di fusione parziale del mantello che media il contributo delle diverse litologie della sorgente al fuso aggregato riducendo la variabilità primaria. Un modo per distinguere il contributo delle singole litologie consite nell’esplorare la variazione composizionale dei fusi estratti da una sorgente composita che fonde a diverse temperature. La diminuzione della temperatura porta alla fusione preferenziale delle litologie a basso-solidus che fondendo per prime sottraggono calore alle componenti ad alto-solidus. Campionare i MORB in regioni ad alto gradiente termico appare quindi un modo promettente per separare il contributo delle diverse litologie. Gradienti termici sufficientemente grandi da influenzare la regione di fusione alla scala dell'asse della dorsale sono generati dall’effetto di raffreddamento al bordo laddove l'asse della dorsale incontra la faglia trasforme. L'effetto di bordo freddo è solitamente limitato a una regione di pochi km. Nel mio lavoro ho studiato l'intersezione orientale della faglia transforme Romanche (RTF) con l'asse della Dorsale Medio-Atlantica (MAR) nell’Oceano Atlantico Equatoriale. La RTF è la più grande trasforme sulla Terra (950 km). Mette direttamente a contatto una litosfera vecchia, fredda e spessa (40 Ma) con la terminazione dei segmenti assiali della MAR. Questa geometria genera un forte gradiente termico laterale che si estende oltre i 50 km dalla intersezione e origina una peculiare tettonica e magmatismo. Ho studiato una collezione di vetri basaltici, recuperati lungo l'asse MAR la spedizione oceanografica SMARTIES 2019, cui ho partecipato, e le precedenti spedizioni PRIMAR. Più di 180 campioni sono stati studiati per gli elementi maggiori e in traccia (EMPA e LA-ICP-MS) e rapporti isotopici di Pb, Sr, Nd e Hf separati tramite cromatografia e misurati con TIMS e HR-MC-ICP-MS. Questi MORB mostrano un contenuto insolitamente elevato di K2O e Na2O, rispettivamente fino all'1,95% in peso e al 4,45% in peso, superando il limite subalcalino/alcalino. Nel complesso, questi basalti variano da MORB transizionali a fortemente arricchiti. La loro composizione è strettamente correlata alla temperatura del mantello locale. Nella sezione più fredda, sia la composizione degli elementi maggiori sia quella degli elementi in traccia appare fortemente eterogenea, mentre nelle sezioni più calde si osservano MORB normale composizionalmente omogenei. La variabilità isotopica misurata (87Sr/86Sr: 0,702398 a 0,703919; 206Pb/204Pb: 18,49 a 19,7; ɛNd: 2,18 a 11,52; ɛHf: -2,88 a 23,73) copre quasi completamente la variabilità della MAR, compresi i settori che mostrano interazioni dorsale-hotspot. Questa variabilità può essere spiegata da un mix di almeno tre diverse componenti oltre al mantello impoverito. La prima componente, ha una impronta di fuso ultra-impoverito, testimonia cioè un evento di fusione parziale molto antico (Ga). La seconda e la terza, rispettivamente con una impronta di tipo HIMU legata al riciclaggio di una crosta oceanica molto antica e una derivata da un materiale continentale, registrano processi processi antichi e profondi del mantello. Un gruppo di campioni mostra composizioni particolari, con anomalie positive di Eu e Sr e rapporti isotopici omogenei simili a quelli del mantello impoverito. Questi MORBs derivano dalla fusione parziale del mantello poco profondo, precedentemente impregnato nel campo di stabilità del plagioclasio, durante lo spostamento dell'asse della dorsale all'interno di una superficie corrugata.

Sciogliere un mantello terrestre eterogeneo sotto un estremo gradiente termico / Lena Verhoest , 2022 Nov 04. 34. ciclo, Anno Accademico 2020/2021.

Sciogliere un mantello terrestre eterogeneo sotto un estremo gradiente termico

VERHOEST, LENA
2022

Abstract

The goal of this PhD thesis is to explore the lithological heterogeneity of the suboceanic mantle sourcing the Mid Ocean Ridge Basalts (MORB). Even though the heterogeneity of the mantle has been demonstrated to vary at short, kilometric scale, the composition of the basalts erupted at a single ridge axis segment usually appears relatively homogeneous. This apparent paradox is due to the relatively high degree of mantle partial melting that averages the different lithological contribution to the pooled melt, smoothing out the original variability. A way to separate the single lithological contributions is to explore the compositional variation of melts extracted from a composed mantle source that melts at different potential temperatures. Decreasing temperatures results in the preferential melting of low-solidus lithologies because of heat drained from the high-solidus components during melting. Sampling MORBs along lateral thermal gradients is therefore a promising way to collect separately the melt contributions from different lithologies. Thermal gradients large enough to affect the melting region at the ridge axis scale can be generated by cooling edge effects where the ridge axis faces the transform fault. The cold-edge effect is usually restricted to a few km-wide region. Here I study the eastern intersection of the Romanche Transform Fault (RTF) with the Mid-Atlantic Ridge (MAR) axis in the Equatorial Atlantic Ocean. The RTF is the largest transform on Earth (950 km). It puts an old, cold and thick lithosphere (40 Ma) directly in contact with the tip of the axial segments of the MAR. This geometry results in a large lateral thermal gradient, reaching >50 km away from the transform and gives rise to peculiar tectonics and magmatism. I studied a set of basaltic glasses, sampled along the MAR axis approaching the RTF during the PRIMAR expeditions and the SMARTIES 2019 oceanographic expedition, to which I took part. More than 180 samples have been studied for major and trace element compositions (EMPA and LA-ICP-MS) and Pb, Sr, Nd and Hf isotope ratios separated by chromatographic methods and measured by TIMS and HR-MC-ICP-MS. These MORBs show an unusual high content of K2O and Na2O, respectively up to 1.95 wt% and 4.45 wt%, plotting across the subalkaline/alkaline boundary. Overall, they vary from transitional- to highly enriched MORBs. Their compositions strictly depend on the local mantle temperature. In the colder section, both major and trace element compositions are very heterogeneous, while samples located from hotter sections have a homogeneous normal-MORB compositional patterns. The isotopic variability in the region (87Sr/86Sr from 0.702398 to 0.703919, 206Pb/204Pb from 18.49 to 19.7, ɛNd from 2.18 to 11.52, ɛHf from -2.88 to 23.73) covers almost the whole variability observed along the MAR, including axis portions showing ridge-hotspot interactions. Explaining the observed variability requires mixing various amounts of at least three different components in addition to the depleted MORB mantle. The first, an ultra-depleted melt signature, witnesses for the involvement of a mantle component recording a very ancient depletion event (Ga). The second, a HIMU-type signature linked to the recycling of a very old oceanic crust, and the third, derived from continental material, are evidence for deep ancient mantle processes. A group of samples shows peculiar compositions, with marked Eu and Sr positive anomalies and homogeneous DMM-type isotopic signatures. These MORBs are proposed to result from partial melting of shallow mantle portions, previously impregnated in the plagioclase stability field, during the relocation of the spreading axis in oscillatory Core Complex tectonics.
Melting a heterogeneous Earth’s mantle under an extreme thermal gradient
4-nov-2022
BRUNELLI, Daniele
File in questo prodotto:
File Dimensione Formato  
PhD thesis_vf_Verhoest.pdf

embargo fino al 03/11/2025

Descrizione: Tesi definitiva Verhoest Léna
Tipologia: Tesi di dottorato
Dimensione 12.66 MB
Formato Adobe PDF
12.66 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1292196
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact