Over the past 20 years, survival rates of T-cell acute lymphoblastic leukemia (T-ALL) patients have improved, mainly because of advances in polychemotherapy protocols. Despite these improvements, we still need novel and less toxic treatment strategies targeting aberrantly activated signaling networks which increase proliferation, survival, and drug resistance of T-ALL cells. One such network is represented by the phosphatidylinositol 3-kinase (PI3K)/Akt axis. PI3K inhibitors have displayed some promising effects in preclinical models of T-ALL. Here, we have analyzed the therapeutic potential of the Akt inhibitor, triciribine, in T-ALL cell lines. Triciribine caused cell cycle arrest and caspase-dependent apoptosis. Western blots demonstrated a dose-dependent dephosphorylation of Akt1/Akt2, and of mammalian target of rapamycin complex 1 downstream targets in response to triciribine. Triciribine induced autophagy, which could be interpreted as a defensive mechanism, because an autophagy inhibitor (chloroquine) increased triciribine-induced apoptosis. Triciribine synergized with vincristine, a chemotherapeutic drug employed for treating T-ALL patients, and targeted the side population of T-ALL cell lines, which might correspond to leukemia initiating cells. Our findings indicate that Akt inhibition, either alone or in combination with chemotherapeutic drugs, may serve as an efficient treatment towards T-ALL cells requiring upregulation of this signaling pathway for their proliferation and survival. J. Cell. Physiol. 226: 822-831, 2011. (C) 2010 Wiley-Liss, Inc.

Preclinical testing of the Akt inhibitor triciribine in T-cell acute lymphoblastic leukemia / Evangelisti, Camilla; Ricci, Francesca; Tazzari, Pierluigi; Chiarini, Francesca; Battistelli, Michela; Falcieri, Elisabetta; Ognibene, Andrea; Pagliaro, Pasqualepaolo; Cocco, Lucio; Mccubrey, James A; Martelli, Alberto M. - In: JOURNAL OF CELLULAR PHYSIOLOGY. - ISSN 0021-9541. - 226:3(2011), pp. 822-831. [10.1002/jcp.22407]

Preclinical testing of the Akt inhibitor triciribine in T-cell acute lymphoblastic leukemia

Chiarini, Francesca;Falcieri, Elisabetta;Cocco, Lucio;
2011-01-01

Abstract

Over the past 20 years, survival rates of T-cell acute lymphoblastic leukemia (T-ALL) patients have improved, mainly because of advances in polychemotherapy protocols. Despite these improvements, we still need novel and less toxic treatment strategies targeting aberrantly activated signaling networks which increase proliferation, survival, and drug resistance of T-ALL cells. One such network is represented by the phosphatidylinositol 3-kinase (PI3K)/Akt axis. PI3K inhibitors have displayed some promising effects in preclinical models of T-ALL. Here, we have analyzed the therapeutic potential of the Akt inhibitor, triciribine, in T-ALL cell lines. Triciribine caused cell cycle arrest and caspase-dependent apoptosis. Western blots demonstrated a dose-dependent dephosphorylation of Akt1/Akt2, and of mammalian target of rapamycin complex 1 downstream targets in response to triciribine. Triciribine induced autophagy, which could be interpreted as a defensive mechanism, because an autophagy inhibitor (chloroquine) increased triciribine-induced apoptosis. Triciribine synergized with vincristine, a chemotherapeutic drug employed for treating T-ALL patients, and targeted the side population of T-ALL cell lines, which might correspond to leukemia initiating cells. Our findings indicate that Akt inhibition, either alone or in combination with chemotherapeutic drugs, may serve as an efficient treatment towards T-ALL cells requiring upregulation of this signaling pathway for their proliferation and survival. J. Cell. Physiol. 226: 822-831, 2011. (C) 2010 Wiley-Liss, Inc.
226
3
822
831
Preclinical testing of the Akt inhibitor triciribine in T-cell acute lymphoblastic leukemia / Evangelisti, Camilla; Ricci, Francesca; Tazzari, Pierluigi; Chiarini, Francesca; Battistelli, Michela; Falcieri, Elisabetta; Ognibene, Andrea; Pagliaro, Pasqualepaolo; Cocco, Lucio; Mccubrey, James A; Martelli, Alberto M. - In: JOURNAL OF CELLULAR PHYSIOLOGY. - ISSN 0021-9541. - 226:3(2011), pp. 822-831. [10.1002/jcp.22407]
Evangelisti, Camilla; Ricci, Francesca; Tazzari, Pierluigi; Chiarini, Francesca; Battistelli, Michela; Falcieri, Elisabetta; Ognibene, Andrea; Pagliaro, Pasqualepaolo; Cocco, Lucio; Mccubrey, James A; Martelli, Alberto M
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1291905
Citazioni
  • ???jsp.display-item.citation.pmc??? 28
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 54
social impact