In this paper, we studied the sliding wear behaviour of polytetrafluoroethylene (PTFE)-based composites under conditions relevant to rotary seals. We specifically aimed to investigate the interactions between different particle-based reinforcements (lamellar or spheroidal bronze particles, PEEK particles) and different counterfaces (uncoated or Cr2O3-coated stainless steel), building upon our own previous work on fibre reinforced-composites to make up for the paucity of literature papers on the role of counterfaces. Pin-on-disc tests were performed under different load and speed conditions using spherical-tipped composite pins against coated or uncoated stainless steel discs to mimic the (initially) non-conformal, unidirectional sliding contact of lip seals. Though all composites attained a steady-state regime controlled by a tribochemical wear mechanism, namely tribofilm formation, there were significant differences among the tribofilms produced by different tribo-systems. Systems that released fine, oxidized metal debris (bronze-filled PTFE and/or uncoated counterpart) developed >1 μm thick, continuous tribofilms on both mating surfaces. Thickness and continuity of the tribofilm decreased with a non-wearable Cr2O3-coated counterpart and/or PEEK as a filler. The tribofilm was conducive to lower steady-state friction, but not lower wear, against stainless steel, whereas all performances (friction coefficient, specific wear rate) were levelled out with a Cr2O3-coated counterface.
Tribological behaviour of PTFE composites: Interplay between reinforcement type and counterface material / Amenta, F.; Bolelli, G.; D'Errico, F.; Ottani, F.; Pedrazzi, S.; Allesina, G.; Bertarini, A.; Puddu, P.; Lusvarghi, L.. - In: WEAR. - ISSN 0043-1648. - 510-511:(2022), pp. 1-23. [10.1016/j.wear.2022.204498]
Tribological behaviour of PTFE composites: Interplay between reinforcement type and counterface material
Amenta F.;Bolelli G.
;D'Errico F.;Ottani F.;Pedrazzi S.;Allesina G.;Puddu P.;Lusvarghi L.
2022
Abstract
In this paper, we studied the sliding wear behaviour of polytetrafluoroethylene (PTFE)-based composites under conditions relevant to rotary seals. We specifically aimed to investigate the interactions between different particle-based reinforcements (lamellar or spheroidal bronze particles, PEEK particles) and different counterfaces (uncoated or Cr2O3-coated stainless steel), building upon our own previous work on fibre reinforced-composites to make up for the paucity of literature papers on the role of counterfaces. Pin-on-disc tests were performed under different load and speed conditions using spherical-tipped composite pins against coated or uncoated stainless steel discs to mimic the (initially) non-conformal, unidirectional sliding contact of lip seals. Though all composites attained a steady-state regime controlled by a tribochemical wear mechanism, namely tribofilm formation, there were significant differences among the tribofilms produced by different tribo-systems. Systems that released fine, oxidized metal debris (bronze-filled PTFE and/or uncoated counterpart) developed >1 μm thick, continuous tribofilms on both mating surfaces. Thickness and continuity of the tribofilm decreased with a non-wearable Cr2O3-coated counterpart and/or PEEK as a filler. The tribofilm was conducive to lower steady-state friction, but not lower wear, against stainless steel, whereas all performances (friction coefficient, specific wear rate) were levelled out with a Cr2O3-coated counterface.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0043164822002551-main.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
34.56 MB
Formato
Adobe PDF
|
34.56 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris