Graphene nanoribbons provide an ideal platform for electronic interferometry in the integer quantum Hall regime. Here, we solve the time-dependent four-component Schrödinger equation for single carriers in graphene and expose several dynamical effects of the carrier localization on their transport characteristics in pn junctions. We simulate two kinds of Mach-Zender interferometers (MZI). The first is based on quantum point contacts and is similar to traditional GaAs/AlGaAs interferometers. As expected, we observe Aharonov-Bohm oscillations and phase averaging. The second is based on valley beam splitters, where we observe unexpected phenomena due to the intersection of the edge channels that constitute the MZI. Our results provide further insights into the behavior of graphene interferometers. Additionally, they highlight the operative regime of such nanodevices for feasible single-particle implementations.
Time-dependent transport in graphene Mach-Zender interferometers / Forghieri, Gaia; Bordone, Paolo; Bertoni, Andre. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 106:16(2022), pp. 165402-1-165402-12. [10.1103/PhysRevB.106.165402]
Time-dependent transport in graphene Mach-Zender interferometers
Gaia Forghieri;Paolo Bordone;
2022
Abstract
Graphene nanoribbons provide an ideal platform for electronic interferometry in the integer quantum Hall regime. Here, we solve the time-dependent four-component Schrödinger equation for single carriers in graphene and expose several dynamical effects of the carrier localization on their transport characteristics in pn junctions. We simulate two kinds of Mach-Zender interferometers (MZI). The first is based on quantum point contacts and is similar to traditional GaAs/AlGaAs interferometers. As expected, we observe Aharonov-Bohm oscillations and phase averaging. The second is based on valley beam splitters, where we observe unexpected phenomena due to the intersection of the edge channels that constitute the MZI. Our results provide further insights into the behavior of graphene interferometers. Additionally, they highlight the operative regime of such nanodevices for feasible single-particle implementations.File | Dimensione | Formato | |
---|---|---|---|
PhysRevB.106.165402.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
2.97 MB
Formato
Adobe PDF
|
2.97 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris