Taking inspiration from the harmonic process with reservoirs introduced by Frassek, Giardinà and Kurchan in (2020 J. Stat. Phys. 180 135-71), we propose integrable boundary conditions for its trigonometric deformation, which is known as the q-Hahn process. Following the formalism established by Mangazeev and Lu in (2019 Nucl. Phys. B 945 114665) using the stochastic R-matrix, we argue that the proposed boundary conditions can be derived from a transfer matrix constructed in the framework of Sklyanin’s extension of the quantum inverse scattering method and consequently preserve the integrable structure of the model. The approach avoids the explicit construction of the K-matrix.

Integrable boundaries for the q-Hahn process / Frassek, R.. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - 55:40(2022), pp. 404008-404008. [10.1088/1751-8121/ac901b]

Integrable boundaries for the q-Hahn process

Frassek R.
2022

Abstract

Taking inspiration from the harmonic process with reservoirs introduced by Frassek, Giardinà and Kurchan in (2020 J. Stat. Phys. 180 135-71), we propose integrable boundary conditions for its trigonometric deformation, which is known as the q-Hahn process. Following the formalism established by Mangazeev and Lu in (2019 Nucl. Phys. B 945 114665) using the stochastic R-matrix, we argue that the proposed boundary conditions can be derived from a transfer matrix constructed in the framework of Sklyanin’s extension of the quantum inverse scattering method and consequently preserve the integrable structure of the model. The approach avoids the explicit construction of the K-matrix.
2022
55
40
404008
404008
Integrable boundaries for the q-Hahn process / Frassek, R.. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - 55:40(2022), pp. 404008-404008. [10.1088/1751-8121/ac901b]
Frassek, R.
File in questo prodotto:
File Dimensione Formato  
openqHahn_Ham_arxiv_v3.pdf

Open Access dal 01/01/2024

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 411.97 kB
Formato Adobe PDF
411.97 kB Adobe PDF Visualizza/Apri
Frassek_2022_J._Phys._A__Math._Theor._55_404008.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 903.06 kB
Formato Adobe PDF
903.06 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1290385
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact