Taking inspiration from the harmonic process with reservoirs introduced by Frassek, Giardinà and Kurchan in (2020 J. Stat. Phys. 180 135-71), we propose integrable boundary conditions for its trigonometric deformation, which is known as the q-Hahn process. Following the formalism established by Mangazeev and Lu in (2019 Nucl. Phys. B 945 114665) using the stochastic R-matrix, we argue that the proposed boundary conditions can be derived from a transfer matrix constructed in the framework of Sklyanin’s extension of the quantum inverse scattering method and consequently preserve the integrable structure of the model. The approach avoids the explicit construction of the K-matrix.
Integrable boundaries for the q-Hahn process / Frassek, R.. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - 55:40(2022), pp. 404008-404008. [10.1088/1751-8121/ac901b]
Integrable boundaries for the q-Hahn process
Frassek R.
2022
Abstract
Taking inspiration from the harmonic process with reservoirs introduced by Frassek, Giardinà and Kurchan in (2020 J. Stat. Phys. 180 135-71), we propose integrable boundary conditions for its trigonometric deformation, which is known as the q-Hahn process. Following the formalism established by Mangazeev and Lu in (2019 Nucl. Phys. B 945 114665) using the stochastic R-matrix, we argue that the proposed boundary conditions can be derived from a transfer matrix constructed in the framework of Sklyanin’s extension of the quantum inverse scattering method and consequently preserve the integrable structure of the model. The approach avoids the explicit construction of the K-matrix.File | Dimensione | Formato | |
---|---|---|---|
openqHahn_Ham_arxiv_v3.pdf
Open Access dal 01/01/2024
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
411.97 kB
Formato
Adobe PDF
|
411.97 kB | Adobe PDF | Visualizza/Apri |
Frassek_2022_J._Phys._A__Math._Theor._55_404008.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
903.06 kB
Formato
Adobe PDF
|
903.06 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris