Realizing hard ceramic coatings on the plastic component of a joint prosthesis can be strategic for the mechanical preservation of the whole implant and to extend its lifetime. Recently, thanks to the Plasma Pulsed Deposition (PPD) method, zirconia coatings on ultra-high molecular weight polyethylene (UHMWPE) substrates resulted in a feasible outcome. Focusing on both the highly specific requirements defined by the biomedical application and the effective possibilities given by the deposition method in the perspectives of technological transfer, it is mandatory to optimize the coating in terms of load bearing capacity. The main goal of this study was to identify through Finite Element Analysis (FEA) the optimal coating thickness that would be able to minimize UHMWPE strain, possible insurgence of cracks within the coating and stresses at coating-substrate interface. Simulations of nanoindentation and microindentation tests were specifically carried out. FEA findings demonstrated that, in general, thickening the zirconia coating strongly reduced the strains in the UHMWPE substrate, although the 1 μm thickness value was identified as critical for the presence of high stresses within the coating and at the interface with the substrate. Therefore, the optimal thickness resulted to be highly dependent on the specific loading condition and final applications.

Optimizing thickness of ceramic coatings on plastic components for orthopedic applications: A finite element analysis / Marchiori, G.; Lopomo, N.; Boi, M.; Berni, M.; Bianchi, M.; Gambardella, A.; Visani, A.; Russo, A.; Marcacci, M.. - In: MATERIALS SCIENCE AND ENGINEERING. C, BIOMIMETIC MATERIALS, SENSORS AND SYSTEMS. - ISSN 0928-4931. - 58:(2016), pp. 381-388. [10.1016/j.msec.2015.08.067]

Optimizing thickness of ceramic coatings on plastic components for orthopedic applications: A finite element analysis

M. Bianchi;
2016

Abstract

Realizing hard ceramic coatings on the plastic component of a joint prosthesis can be strategic for the mechanical preservation of the whole implant and to extend its lifetime. Recently, thanks to the Plasma Pulsed Deposition (PPD) method, zirconia coatings on ultra-high molecular weight polyethylene (UHMWPE) substrates resulted in a feasible outcome. Focusing on both the highly specific requirements defined by the biomedical application and the effective possibilities given by the deposition method in the perspectives of technological transfer, it is mandatory to optimize the coating in terms of load bearing capacity. The main goal of this study was to identify through Finite Element Analysis (FEA) the optimal coating thickness that would be able to minimize UHMWPE strain, possible insurgence of cracks within the coating and stresses at coating-substrate interface. Simulations of nanoindentation and microindentation tests were specifically carried out. FEA findings demonstrated that, in general, thickening the zirconia coating strongly reduced the strains in the UHMWPE substrate, although the 1 μm thickness value was identified as critical for the presence of high stresses within the coating and at the interface with the substrate. Therefore, the optimal thickness resulted to be highly dependent on the specific loading condition and final applications.
2016
58
381
388
Optimizing thickness of ceramic coatings on plastic components for orthopedic applications: A finite element analysis / Marchiori, G.; Lopomo, N.; Boi, M.; Berni, M.; Bianchi, M.; Gambardella, A.; Visani, A.; Russo, A.; Marcacci, M.. - In: MATERIALS SCIENCE AND ENGINEERING. C, BIOMIMETIC MATERIALS, SENSORS AND SYSTEMS. - ISSN 0928-4931. - 58:(2016), pp. 381-388. [10.1016/j.msec.2015.08.067]
Marchiori, G.; Lopomo, N.; Boi, M.; Berni, M.; Bianchi, M.; Gambardella, A.; Visani, A.; Russo, A.; Marcacci, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1288223
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 11
social impact