The use of ceramic coatings to improve mechanical, chemical, and biological properties of a large variety of materials including polymers and metals has often produced technologically attractive as well as problematic surfaces to study, because of their complicate morphology compared to smooth surfaces obtained, for example, by atomistic processes. In this work we deposited thin films of zirconia by a new generation pulsed electron deposition system named Ionized Jet Deposition onto four materials, different from each other by structure and surface texture, and applied methods of fractal geometry to investigate their microstructure and roughening mechanism at different thickness values. Our findings show that the film growth does not follow any known class of universality, but is strongly influenced by non-local effects inherent to deposition technique. In this context, we show that deposition onto rough materials is dominated by a strong memory effect that leads to uniform surface coverages that microscopically retain the shape of the substrate. This circumstance is potentially useful for deposition of conformal coatings in view of applications of such plasma-based deposition technique to cases of technological interest.

A comparative study of the growth dynamics of zirconia thin films deposited by ionized jet deposition onto different substrates / Gambardella, A.; Berni, M.; Russo, A.; Bianchi, M.. - In: SURFACE & COATINGS TECHNOLOGY. - ISSN 0257-8972. - 337:(2018), pp. 306-312. [10.1016/j.surfcoat.2018.01.026]

A comparative study of the growth dynamics of zirconia thin films deposited by ionized jet deposition onto different substrates

M. Bianchi
2018

Abstract

The use of ceramic coatings to improve mechanical, chemical, and biological properties of a large variety of materials including polymers and metals has often produced technologically attractive as well as problematic surfaces to study, because of their complicate morphology compared to smooth surfaces obtained, for example, by atomistic processes. In this work we deposited thin films of zirconia by a new generation pulsed electron deposition system named Ionized Jet Deposition onto four materials, different from each other by structure and surface texture, and applied methods of fractal geometry to investigate their microstructure and roughening mechanism at different thickness values. Our findings show that the film growth does not follow any known class of universality, but is strongly influenced by non-local effects inherent to deposition technique. In this context, we show that deposition onto rough materials is dominated by a strong memory effect that leads to uniform surface coverages that microscopically retain the shape of the substrate. This circumstance is potentially useful for deposition of conformal coatings in view of applications of such plasma-based deposition technique to cases of technological interest.
2018
337
306
312
A comparative study of the growth dynamics of zirconia thin films deposited by ionized jet deposition onto different substrates / Gambardella, A.; Berni, M.; Russo, A.; Bianchi, M.. - In: SURFACE & COATINGS TECHNOLOGY. - ISSN 0257-8972. - 337:(2018), pp. 306-312. [10.1016/j.surfcoat.2018.01.026]
Gambardella, A.; Berni, M.; Russo, A.; Bianchi, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1288189
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 27
social impact