Bone physiology relies on the delicate balance between resorption and formation of its tissue. Bone resorption depends on a process called osteoclastogenesis in which bone-resorbing cells, i.e., osteoclasts, are produced by the differentiation of more undifferentiated progenitors and precursors. This process is governed by two main factors, monocyte colony-stimulating factor (M-CSF) and receptor activator of NFκB ligand (RANKL). While the former exerts a proliferating effect on progenitors/precursors, the latter triggers a differentiation effect on more mature cells of the same lineage. Bone homeostasis requires a perfect space–time coordination of the involved signals. When osteoclastogenesis is poorly balanced with the differentiation of the bone forming counterparts, i.e., osteoblasts, physiological bone remodelling can turn into a pathological state, causing the systematic disruption of bone tissue which results in osteopenia or osteolysis. Examples of these conditions are represented by osteoporosis, Paget’s disease, bone metastasis, and multiple myeloma. Therefore, drugs targeting osteoclastogenesis, such as bisphosphonates and an anti-RANKL monoclonal antibody, have been developed and are currently used in the treatment of such diseases. Despite their demonstrated therapeutic efficacy, these agents are unfortunately not devoid of side effects. In this regard, a condition called osteonecrosis of the jaw (ONJ) has been recently correlated with anti-resorptive therapy. In this review we will address the involvement of osteoclasts and osteoclast-related factors in the pathogenesis of ONJ. It is to be hoped that a better understanding of the biological mechanisms underlying bone remodelling will help in the design a medical therapeutic approach for ONJ as an alternative to surgical procedures.

Bone physiology relies on the delicate balance between resorption and formation of its tissue. Bone resorption depends on a process called osteoclastogenesis in which bone-resorbing cells, i.e., osteoclasts, are produced by the differentiation of more undifferentiated progenitors and precursors. This process is governed by two main factors, monocyte colony-stimulating factor (M-CSF) and receptor activator of NFκB ligand (RANKL). While the former exerts a proliferating effect on progenitors/precursors, the latter triggers a differentiation effect on more mature cells of the same lineage. Bone homeostasis requires a perfect space–time coordination of the involved signals. When osteoclastogenesis is poorly balanced with the differentiation of the bone forming counterparts, i.e., osteoblasts, physiological bone remodelling can turn into a pathological state, causing the systematic disruption of bone tissue which results in osteopenia or osteolysis. Examples of these conditions are represented by osteoporosis, Paget’s disease, bone metastasis, and multiple myeloma. Therefore, drugs targeting osteoclastogenesis, such as bisphosphonates and an anti-RANKL monoclonal antibody, have been developed and are currently used in the treatment of such diseases. Despite their demonstrated therapeutic efficacy, these agents are unfortunately not devoid of side effects. In this regard, a condition called osteonecrosis of the jaw (ONJ) has been recently correlated with anti-resorptive therapy. In this review we will address the involvement of osteoclasts and osteoclast-related factors in the pathogenesis of ONJ. It is to be hoped that a better understanding of the biological mechanisms underlying bone remodelling will help in the design a medical therapeutic approach for ONJ as an alternative to surgical procedures.

From Osteoclast Differentiation to Osteonecrosis of the Jaw: Molecular and Clinical Insights / Anesi, Alexandre; Generali, Luigi; Sandoni, Laura; Pozzi, Samantha; Grande, Alexis. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1422-0067. - 20:19(2019), pp. 4925-4943. [10.3390/ijms20194925]

From Osteoclast Differentiation to Osteonecrosis of the Jaw: Molecular and Clinical Insights

Alexandre Anesi;Luigi Generali;Laura Sandoni;Samantha pozzi;Alexis Grande
2019

Abstract

Bone physiology relies on the delicate balance between resorption and formation of its tissue. Bone resorption depends on a process called osteoclastogenesis in which bone-resorbing cells, i.e., osteoclasts, are produced by the differentiation of more undifferentiated progenitors and precursors. This process is governed by two main factors, monocyte colony-stimulating factor (M-CSF) and receptor activator of NFκB ligand (RANKL). While the former exerts a proliferating effect on progenitors/precursors, the latter triggers a differentiation effect on more mature cells of the same lineage. Bone homeostasis requires a perfect space–time coordination of the involved signals. When osteoclastogenesis is poorly balanced with the differentiation of the bone forming counterparts, i.e., osteoblasts, physiological bone remodelling can turn into a pathological state, causing the systematic disruption of bone tissue which results in osteopenia or osteolysis. Examples of these conditions are represented by osteoporosis, Paget’s disease, bone metastasis, and multiple myeloma. Therefore, drugs targeting osteoclastogenesis, such as bisphosphonates and an anti-RANKL monoclonal antibody, have been developed and are currently used in the treatment of such diseases. Despite their demonstrated therapeutic efficacy, these agents are unfortunately not devoid of side effects. In this regard, a condition called osteonecrosis of the jaw (ONJ) has been recently correlated with anti-resorptive therapy. In this review we will address the involvement of osteoclasts and osteoclast-related factors in the pathogenesis of ONJ. It is to be hoped that a better understanding of the biological mechanisms underlying bone remodelling will help in the design a medical therapeutic approach for ONJ as an alternative to surgical procedures.
2019
20
19
4925
4943
From Osteoclast Differentiation to Osteonecrosis of the Jaw: Molecular and Clinical Insights / Anesi, Alexandre; Generali, Luigi; Sandoni, Laura; Pozzi, Samantha; Grande, Alexis. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1422-0067. - 20:19(2019), pp. 4925-4943. [10.3390/ijms20194925]
Anesi, Alexandre; Generali, Luigi; Sandoni, Laura; Pozzi, Samantha; Grande, Alexis
File in questo prodotto:
File Dimensione Formato  
Anesi et al, IJMS, 2019.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1287964
Citazioni
  • ???jsp.display-item.citation.pmc??? 27
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 40
social impact