Big data integration represents one of the main challenges for the use of techniques and tools based on Artificial Intelligence (AI) in several crucial areas: eHealth, energy management, enterprise data, etc. In this context, Data-Centric AI plays a primary role in guaranteeing the quality of the data on which these tools and techniques operate. Thus, the activities of the Database Research Group (DBGroup) of the “Enzo Ferrari” Engineering Department of the University of Modena and Reggio Emilia are moving in this direction. Therefore, we present the main research projects of the DBGroup, which are part of collaborations in various application sectors.
Big Data Integration for Data-Centric AI / Bergamaschi, Sonia; Beneventano, Domenico; Simonini, Giovanni; Gagliardelli, Luca; Aslam, Adeel; De Sabbata, Giulio; Zecchini, Luca. - (2022). (Intervento presentato al convegno 1st Italian Conference on Big Data and Data Science (ItaData 2022) tenutosi a Milan, Italy nel September 20-21, 2022).
Big Data Integration for Data-Centric AI
Bergamaschi, Sonia;Beneventano, Domenico;Simonini, Giovanni;Gagliardelli, Luca;Aslam, Adeel;De Sabbata, Giulio;Zecchini, Luca
2022
Abstract
Big data integration represents one of the main challenges for the use of techniques and tools based on Artificial Intelligence (AI) in several crucial areas: eHealth, energy management, enterprise data, etc. In this context, Data-Centric AI plays a primary role in guaranteeing the quality of the data on which these tools and techniques operate. Thus, the activities of the Database Research Group (DBGroup) of the “Enzo Ferrari” Engineering Department of the University of Modena and Reggio Emilia are moving in this direction. Therefore, we present the main research projects of the DBGroup, which are part of collaborations in various application sectors.File | Dimensione | Formato | |
---|---|---|---|
bergamaschi_2022_dbgroup_itadata.pdf
Open access
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
382.09 kB
Formato
Adobe PDF
|
382.09 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris