: Bayesian disease mapping, yet if undeniably useful to describe variation in risk over time and space, comes with the hurdle of prior elicitation on hard-to-interpret random effect precision parameters. We introduce a reparametrized version of the popular spatio-temporal interaction models, based on Kronecker product intrinsic Gaussian Markov random fields, that we name the variance partitioning model. The variance partitioning model includes a mixing parameter that balances the contribution of the main and interaction effects to the total (generalized) variance and enhances interpretability. The use of a penalized complexity prior on the mixing parameter aids in coding prior information in an intuitive way. We illustrate the advantages of the variance partitioning model using two case studies.
Variance partitioning in spatio-temporal disease mapping models / Franco-Villoria, Maria; Ventrucci, Massimo; Rue, Håvard. - In: STATISTICAL METHODS IN MEDICAL RESEARCH. - ISSN 0962-2802. - 31:8(2022), pp. 1566-1578. [10.1177/09622802221099642]
Variance partitioning in spatio-temporal disease mapping models
Franco-Villoria, Maria
;
2022
Abstract
: Bayesian disease mapping, yet if undeniably useful to describe variation in risk over time and space, comes with the hurdle of prior elicitation on hard-to-interpret random effect precision parameters. We introduce a reparametrized version of the popular spatio-temporal interaction models, based on Kronecker product intrinsic Gaussian Markov random fields, that we name the variance partitioning model. The variance partitioning model includes a mixing parameter that balances the contribution of the main and interaction effects to the total (generalized) variance and enhances interpretability. The use of a penalized complexity prior on the mixing parameter aids in coding prior information in an intuitive way. We illustrate the advantages of the variance partitioning model using two case studies.File | Dimensione | Formato | |
---|---|---|---|
paper.pdf
Open access
Tipologia:
AAM - Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
16.36 MB
Formato
Adobe PDF
|
16.36 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris