The rehabilitation of reinforced concrete (RC) bridge columns subjected to chloride-induced corrosion is addressed in the present paper. The proposed strategy is based on the replacement of the original external layer made of normal-strength concrete (NSC) with ultra-high performance fiber reinforced concrete (UHPFRC), and it additionally involves the substitution of the existing corroded longitudinal reinforcement with new machined steel rebars. This repair technique aims at restoring strength, stiffness, and ductility of the original column in a short time without altering its cross-section dimensions. Because of the high compactness of the UHPFRC, it also serves at improving its durability. The main contribution of the present work is a numerical investigation carried out in order to identify how the design decisions about the repair strategy influence the behavior of the restored column. The parametric investigation reveals that the length of the zone in which NSC is replaced by UHPFRC as well as the machined index (i.e., ratio between turned and original rebar cross-section area) must be properly selected to make the intervention effective. Numerical results also highlight that the main design issue to deal with is the relocation of the plastic hinge from the repaired zone towards the weak unrepaired part of the column. Practical design recommendations are finally formulated.

Repair of reinforced concrete bridge columns subjected to chloride-induced corrosion with ultra-high performance fiber reinforced concrete / Briseghella, Bruno. - In: STRUCTURAL CONCRETE. - ISSN 1464-4177. - 24:1(2023), pp. 332-344. [10.1002/suco.202200555]

Repair of reinforced concrete bridge columns subjected to chloride-induced corrosion with ultra-high performance fiber reinforced concrete

briseghella
2023

Abstract

The rehabilitation of reinforced concrete (RC) bridge columns subjected to chloride-induced corrosion is addressed in the present paper. The proposed strategy is based on the replacement of the original external layer made of normal-strength concrete (NSC) with ultra-high performance fiber reinforced concrete (UHPFRC), and it additionally involves the substitution of the existing corroded longitudinal reinforcement with new machined steel rebars. This repair technique aims at restoring strength, stiffness, and ductility of the original column in a short time without altering its cross-section dimensions. Because of the high compactness of the UHPFRC, it also serves at improving its durability. The main contribution of the present work is a numerical investigation carried out in order to identify how the design decisions about the repair strategy influence the behavior of the restored column. The parametric investigation reveals that the length of the zone in which NSC is replaced by UHPFRC as well as the machined index (i.e., ratio between turned and original rebar cross-section area) must be properly selected to make the intervention effective. Numerical results also highlight that the main design issue to deal with is the relocation of the plastic hinge from the repaired zone towards the weak unrepaired part of the column. Practical design recommendations are finally formulated.
2023
1-set-2022
24
1
332
344
Repair of reinforced concrete bridge columns subjected to chloride-induced corrosion with ultra-high performance fiber reinforced concrete / Briseghella, Bruno. - In: STRUCTURAL CONCRETE. - ISSN 1464-4177. - 24:1(2023), pp. 332-344. [10.1002/suco.202200555]
Briseghella, Bruno
File in questo prodotto:
File Dimensione Formato  
Structural Concrete - 2022 - Pelle - Repair of reinforced concrete bridge columns subjected to chloride‐induced corrosion.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 2.39 MB
Formato Adobe PDF
2.39 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1287340
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact