Structural optimization is an important tool for structural designers that helps them to find innovative design solutions and structural forms with a better exploitation of materials as well as decreased self-weight and minimum material costs. In this article, a design procedure coupling the influence matrix method and genetic algorithms to optimize stay cables in cable-stayed bridges is presented. Following that, the design procedure is utilized in the preliminary design of a twin towers double-cable planes cable-stayed bridge to be located in Ferrara, Italy. The cable cross-sectional areas and corresponding pre-tension forces are optimized simultaneously. The results demonstrate that the proposed procedure is a powerful tool for designing stay cables and predicting the optimum cross-sectional areas of stay cables under certain stress and displacement constraints.
Cable optimization of a cable-stayed bridge based on genetic algorithms and the influence matrix method / Feng, Y.; Lan, C.; Briseghella, B.; Fenu, L.; Zordan, T.. - In: ENGINEERING OPTIMIZATION. - ISSN 0305-215X. - 54:1(2022), pp. 20-39. [10.1080/0305215X.2020.1850709]
Cable optimization of a cable-stayed bridge based on genetic algorithms and the influence matrix method
Briseghella B.;
2022
Abstract
Structural optimization is an important tool for structural designers that helps them to find innovative design solutions and structural forms with a better exploitation of materials as well as decreased self-weight and minimum material costs. In this article, a design procedure coupling the influence matrix method and genetic algorithms to optimize stay cables in cable-stayed bridges is presented. Following that, the design procedure is utilized in the preliminary design of a twin towers double-cable planes cable-stayed bridge to be located in Ferrara, Italy. The cable cross-sectional areas and corresponding pre-tension forces are optimized simultaneously. The results demonstrate that the proposed procedure is a powerful tool for designing stay cables and predicting the optimum cross-sectional areas of stay cables under certain stress and displacement constraints.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris