An original, innovative, high-throughput method based on attenuated total reflectance - Fourier's transform infrared (ATR-FTIR) spectroscopy has been developed for the proof-of-concept discrimination of fibre-type from drug-type Cannabissativa L. inflorescences. The cannabis sample is placed on the instrument plate and analysed without any previous sample pretreatment step. In this way, a complete analysis lasts just a few seconds, the time needed to record an ATR-FTIR spectrum. The method was calibrated and cross-validated using data provided by liquid chromatography - tandem mass spectrometry (LC–MS/MS) analysis of the different cannabis samples and carried out the statistical assays for quantitation. During cross-validation, complete agreement was obtained between ATR-FTIR and LC–MS/MS identification of the cannabis chemotype. Moreover, the method has proved to be capable of quantifying with excellent accuracy (75–103 % vs. LC–MS/MS) seven neutral and acidic cannabinoids (THC, THCA, CBD, CBDA, CBG, CBGA, CBN) in inflorescences from different sources. The extreme feasibility and speed of execution make this ATR-FTIR method highly attractive as a proof-of-concept for a possible application to quality controls during pharmaceutical product manufacturing, as well as on-the-street cannabis controls and user counselling.

Discriminating different Cannabis sativa L. chemotypes using attenuated total reflectance - infrared (ATR-FTIR) spectroscopy: A proof of concept / Cirrincione, M.; Saladini, B.; Brighenti, V.; Salamone, S.; Mandrioli, R.; Pollastro, F.; Pellati, F.; Protti, M.; Mercolini, L.. - In: JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS. - ISSN 0731-7085. - 204:(2021), pp. N/A-N/A. [10.1016/j.jpba.2021.114270]

Discriminating different Cannabis sativa L. chemotypes using attenuated total reflectance - infrared (ATR-FTIR) spectroscopy: A proof of concept

Brighenti V.;Pellati F.;
2021

Abstract

An original, innovative, high-throughput method based on attenuated total reflectance - Fourier's transform infrared (ATR-FTIR) spectroscopy has been developed for the proof-of-concept discrimination of fibre-type from drug-type Cannabissativa L. inflorescences. The cannabis sample is placed on the instrument plate and analysed without any previous sample pretreatment step. In this way, a complete analysis lasts just a few seconds, the time needed to record an ATR-FTIR spectrum. The method was calibrated and cross-validated using data provided by liquid chromatography - tandem mass spectrometry (LC–MS/MS) analysis of the different cannabis samples and carried out the statistical assays for quantitation. During cross-validation, complete agreement was obtained between ATR-FTIR and LC–MS/MS identification of the cannabis chemotype. Moreover, the method has proved to be capable of quantifying with excellent accuracy (75–103 % vs. LC–MS/MS) seven neutral and acidic cannabinoids (THC, THCA, CBD, CBDA, CBG, CBGA, CBN) in inflorescences from different sources. The extreme feasibility and speed of execution make this ATR-FTIR method highly attractive as a proof-of-concept for a possible application to quality controls during pharmaceutical product manufacturing, as well as on-the-street cannabis controls and user counselling.
2021
204
N/A
N/A
Discriminating different Cannabis sativa L. chemotypes using attenuated total reflectance - infrared (ATR-FTIR) spectroscopy: A proof of concept / Cirrincione, M.; Saladini, B.; Brighenti, V.; Salamone, S.; Mandrioli, R.; Pollastro, F.; Pellati, F.; Protti, M.; Mercolini, L.. - In: JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS. - ISSN 0731-7085. - 204:(2021), pp. N/A-N/A. [10.1016/j.jpba.2021.114270]
Cirrincione, M.; Saladini, B.; Brighenti, V.; Salamone, S.; Mandrioli, R.; Pollastro, F.; Pellati, F.; Protti, M.; Mercolini, L.
File in questo prodotto:
File Dimensione Formato  
2021_Cirrincione_JPBA.pdf

Accesso riservato

Descrizione: Cannabis ATR-FTIR JPBA
Tipologia: Versione pubblicata dall'editore
Dimensione 912.24 kB
Formato Adobe PDF
912.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1287263
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact