Several industrial processes produce large amounts of heavy metals-rich wastes, which could be considered as "trash-can raw materials". The incorporation in ceramic systems can be regarded as a key process to permanently incorporate hazardous heavy metals in stable matrixes. In particular the aim of this work is to prepare and evaluate environmental risk assessment of coloured glass and glass-ceramic with the addition of chromium(III) galvanic sludge having a high content of Cr2O3 (15.91 wt%). Trivalent chromium compounds generally have low toxicity while hexavalent chromium is recognized by the International Agency for Research on Cancer and by the US Toxicology Program as a pulmonary carcinogen. The sludge has been characterized by ICP -AES chemical analysis, powder XRD diffraction, DTA, SEM, leaching test after different thermal treatments ranging from 400°C to 1200°C. Batch compositions were prepared by mixing this sludge with glass containers. The glass container composition is rich in SiO2 (69.89 wt%), Na 2O (12.32 wt%) and CaO (11.03 wt%), while the sludge has a high amount of CaO (42.90 wt%) and Cr2O3 (15.91 wt%). The vitrification was carried out at 1450°C in an electrical melting furnace for 2 h followed by quenching in water or on graphite mould. Chromium incorporation mechanisms, vitrification processability, effect of initial Cr oxidation state, and product performance were investigated. In particular toxic characterization by leaching procedure and chemical durability studies of the glasses and glass-ceramics were used to evaluate the leaching of heavy metals (in particular of Cr). The results indicate that all the glasses obtained were inert and the heavy metals were immobilized.

Physical-chemical characterization of a galvanic sludge and its inertization by vitrification using container glass / Andreola, F.; Barbieri, L.; Cannio, M.; Lancellotti, I.; Siligardi, C.; Soragni, E.. - 92:(2006), pp. 23-30. (Intervento presentato al convegno 3rd International Conference on Waste Management and the Environment, WASTE MANAGEMENT 2006, WM06 tenutosi a Malta, mlt nel 2006) [10.2495/WM060031].

Physical-chemical characterization of a galvanic sludge and its inertization by vitrification using container glass

Andreola F.;Barbieri L.;Cannio M.;Lancellotti I.;Siligardi C.;Soragni E.
2006

Abstract

Several industrial processes produce large amounts of heavy metals-rich wastes, which could be considered as "trash-can raw materials". The incorporation in ceramic systems can be regarded as a key process to permanently incorporate hazardous heavy metals in stable matrixes. In particular the aim of this work is to prepare and evaluate environmental risk assessment of coloured glass and glass-ceramic with the addition of chromium(III) galvanic sludge having a high content of Cr2O3 (15.91 wt%). Trivalent chromium compounds generally have low toxicity while hexavalent chromium is recognized by the International Agency for Research on Cancer and by the US Toxicology Program as a pulmonary carcinogen. The sludge has been characterized by ICP -AES chemical analysis, powder XRD diffraction, DTA, SEM, leaching test after different thermal treatments ranging from 400°C to 1200°C. Batch compositions were prepared by mixing this sludge with glass containers. The glass container composition is rich in SiO2 (69.89 wt%), Na 2O (12.32 wt%) and CaO (11.03 wt%), while the sludge has a high amount of CaO (42.90 wt%) and Cr2O3 (15.91 wt%). The vitrification was carried out at 1450°C in an electrical melting furnace for 2 h followed by quenching in water or on graphite mould. Chromium incorporation mechanisms, vitrification processability, effect of initial Cr oxidation state, and product performance were investigated. In particular toxic characterization by leaching procedure and chemical durability studies of the glasses and glass-ceramics were used to evaluate the leaching of heavy metals (in particular of Cr). The results indicate that all the glasses obtained were inert and the heavy metals were immobilized.
2006
3rd International Conference on Waste Management and the Environment, WASTE MANAGEMENT 2006, WM06
Malta, mlt
2006
92
23
30
Andreola, F.; Barbieri, L.; Cannio, M.; Lancellotti, I.; Siligardi, C.; Soragni, E.
Physical-chemical characterization of a galvanic sludge and its inertization by vitrification using container glass / Andreola, F.; Barbieri, L.; Cannio, M.; Lancellotti, I.; Siligardi, C.; Soragni, E.. - 92:(2006), pp. 23-30. (Intervento presentato al convegno 3rd International Conference on Waste Management and the Environment, WASTE MANAGEMENT 2006, WM06 tenutosi a Malta, mlt nel 2006) [10.2495/WM060031].
File in questo prodotto:
File Dimensione Formato  
WM06003FU1.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 909.14 kB
Formato Adobe PDF
909.14 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1287183
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact