Federated learning (FL) over wireless communication channels, specifically, over-the-air (OTA) model aggregation framework is considered. In OTA wireless setups, the adverse channel effects can be alleviated by increasing the number of receive antennas at the parameter server (PS), which performs model aggregation. However, the performance of OTA FL is severely limited by the presence of mobile users (MUs) located far away from the PS. In this paper, to mitigate this limitation, we propose hierarchical over-the-air federated learning (HOTAFL), which utilizes intermediary servers (IS) to form clusters near MUs. We provide a convergence analysis for the proposed setup, and demonstrate through experimental results that local aggregation in each cluster before global aggregation leads to a better performance and faster convergence than OTA FL.

Hierarchical Over-the-Air Federated Edge Learning / Aygun, O.; Kazemi, M.; Gunduz, D.; Duman, T. M.. - 2022-:(2022), pp. 3376-3381. (Intervento presentato al convegno 2022 IEEE International Conference on Communications, ICC 2022 tenutosi a COEX, kor nel 2022) [10.1109/ICC45855.2022.9839230].

Hierarchical Over-the-Air Federated Edge Learning

Gunduz D.;
2022

Abstract

Federated learning (FL) over wireless communication channels, specifically, over-the-air (OTA) model aggregation framework is considered. In OTA wireless setups, the adverse channel effects can be alleviated by increasing the number of receive antennas at the parameter server (PS), which performs model aggregation. However, the performance of OTA FL is severely limited by the presence of mobile users (MUs) located far away from the PS. In this paper, to mitigate this limitation, we propose hierarchical over-the-air federated learning (HOTAFL), which utilizes intermediary servers (IS) to form clusters near MUs. We provide a convergence analysis for the proposed setup, and demonstrate through experimental results that local aggregation in each cluster before global aggregation leads to a better performance and faster convergence than OTA FL.
2022
2022 IEEE International Conference on Communications, ICC 2022
COEX, kor
2022
2022-
3376
3381
Aygun, O.; Kazemi, M.; Gunduz, D.; Duman, T. M.
Hierarchical Over-the-Air Federated Edge Learning / Aygun, O.; Kazemi, M.; Gunduz, D.; Duman, T. M.. - 2022-:(2022), pp. 3376-3381. (Intervento presentato al convegno 2022 IEEE International Conference on Communications, ICC 2022 tenutosi a COEX, kor nel 2022) [10.1109/ICC45855.2022.9839230].
File in questo prodotto:
File Dimensione Formato  
2112.11167.pdf

Open access

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 3.53 MB
Formato Adobe PDF
3.53 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1286888
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 7
social impact