High-Performance Computing (HPC) processors are nowadays integrated Cyber-Physical Systems requiring complex and high-performance closed-loop control strategies for efficient power and thermal management. To satisfy high-bandwidth, real-time multi-input multi-output (MIMO) optimal power control requirements, high-end processors integrate on-die Power Controller Systems (PCS). Traditional PCS is based on a simple microcontroller core supported by dedicated interface logic and sequencers. More scalable and flexible PCS architectures are required to support advanced MIMO control algorithms required for managing the ever-increasing number of cores, power states, and process, voltage, temperature (PVT) variability. In this paper, we present ControlPULP, a complete, open-source HW/SW RISC-V parallel PCS platform consisting of a single-core microcontroller coupled with a scalable multi-core cluster system with a specialized DMA engine and a fast multi-core interrupt controller for parallel acceleration of real-time power management policies. ControlPULP relies on a real-time OS (FreeRTOS) to schedule a Power Control Firmware (PCF) software layer. We evaluate ControlPULP design choices in a cycle-accurate, event-based simulation environment and show the benefits of the proposed multi-core acceleration solution. We demonstrate ControlPULP in a PCS use-case targeting a next-generation 72-cores HPC processor. We show that the multi-core cluster accelerates the PCF achieving 4.9x speedup with respect to single-core execution.

ControlPULP: A RISC-V Power Controller for HPC Processors with Parallel Control-Law Computation Acceleration / Ottaviano, A.; Balas, R.; Bambini, G.; Bonfanti, C.; Benatti, S.; Rossi, D.; Benini, L.; Bartolini, A.. - 13511:(2022), pp. 120-135. (Intervento presentato al convegno 22nd International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS 2021 tenutosi a grc nel 2022) [10.1007/978-3-031-15074-6_8].

ControlPULP: A RISC-V Power Controller for HPC Processors with Parallel Control-Law Computation Acceleration

Benatti S.;Benini L.;
2022

Abstract

High-Performance Computing (HPC) processors are nowadays integrated Cyber-Physical Systems requiring complex and high-performance closed-loop control strategies for efficient power and thermal management. To satisfy high-bandwidth, real-time multi-input multi-output (MIMO) optimal power control requirements, high-end processors integrate on-die Power Controller Systems (PCS). Traditional PCS is based on a simple microcontroller core supported by dedicated interface logic and sequencers. More scalable and flexible PCS architectures are required to support advanced MIMO control algorithms required for managing the ever-increasing number of cores, power states, and process, voltage, temperature (PVT) variability. In this paper, we present ControlPULP, a complete, open-source HW/SW RISC-V parallel PCS platform consisting of a single-core microcontroller coupled with a scalable multi-core cluster system with a specialized DMA engine and a fast multi-core interrupt controller for parallel acceleration of real-time power management policies. ControlPULP relies on a real-time OS (FreeRTOS) to schedule a Power Control Firmware (PCF) software layer. We evaluate ControlPULP design choices in a cycle-accurate, event-based simulation environment and show the benefits of the proposed multi-core acceleration solution. We demonstrate ControlPULP in a PCS use-case targeting a next-generation 72-cores HPC processor. We show that the multi-core cluster accelerates the PCF achieving 4.9x speedup with respect to single-core execution.
2022
22nd International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS 2021
grc
2022
13511
120
135
Ottaviano, A.; Balas, R.; Bambini, G.; Bonfanti, C.; Benatti, S.; Rossi, D.; Benini, L.; Bartolini, A.
ControlPULP: A RISC-V Power Controller for HPC Processors with Parallel Control-Law Computation Acceleration / Ottaviano, A.; Balas, R.; Bambini, G.; Bonfanti, C.; Benatti, S.; Rossi, D.; Benini, L.; Bartolini, A.. - 13511:(2022), pp. 120-135. (Intervento presentato al convegno 22nd International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS 2021 tenutosi a grc nel 2022) [10.1007/978-3-031-15074-6_8].
File in questo prodotto:
File Dimensione Formato  
SAMOS22.pdf

Open access

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 3.9 MB
Formato Adobe PDF
3.9 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1286447
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact