Deep learning is bringing remarkable contributions to the field of argumentation mining, but the existing approaches still need to fill the gap toward performing advanced reasoning tasks. In this position paper, we posit that neural-symbolic and statistical relational learning could play a crucial role in the integration of symbolic and sub-symbolic methods to achieve this goal.

Neural-Symbolic Argumentation Mining: An Argument in Favor of Deep Learning and Reasoning / Galassi, A.; Kersting, K.; Lippi, M.; Shao, X.; Torroni, P.. - In: FRONTIERS IN BIG DATA. - ISSN 2624-909X. - 2:(2020), pp. N/A-N/A. [10.3389/fdata.2019.00052]

Neural-Symbolic Argumentation Mining: An Argument in Favor of Deep Learning and Reasoning

Galassi A.;Lippi M.;
2020

Abstract

Deep learning is bringing remarkable contributions to the field of argumentation mining, but the existing approaches still need to fill the gap toward performing advanced reasoning tasks. In this position paper, we posit that neural-symbolic and statistical relational learning could play a crucial role in the integration of symbolic and sub-symbolic methods to achieve this goal.
2020
2
N/A
N/A
Neural-Symbolic Argumentation Mining: An Argument in Favor of Deep Learning and Reasoning / Galassi, A.; Kersting, K.; Lippi, M.; Shao, X.; Torroni, P.. - In: FRONTIERS IN BIG DATA. - ISSN 2624-909X. - 2:(2020), pp. N/A-N/A. [10.3389/fdata.2019.00052]
Galassi, A.; Kersting, K.; Lippi, M.; Shao, X.; Torroni, P.
File in questo prodotto:
File Dimensione Formato  
fdata-02-00052.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 394.97 kB
Formato Adobe PDF
394.97 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1286434
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact