Deep learning is bringing remarkable contributions to the field of argumentation mining, but the existing approaches still need to fill the gap toward performing advanced reasoning tasks. In this position paper, we posit that neural-symbolic and statistical relational learning could play a crucial role in the integration of symbolic and sub-symbolic methods to achieve this goal.
Neural-Symbolic Argumentation Mining: An Argument in Favor of Deep Learning and Reasoning / Galassi, A.; Kersting, K.; Lippi, M.; Shao, X.; Torroni, P.. - In: FRONTIERS IN BIG DATA. - ISSN 2624-909X. - 2:(2020), pp. N/A-N/A. [10.3389/fdata.2019.00052]
Neural-Symbolic Argumentation Mining: An Argument in Favor of Deep Learning and Reasoning
Galassi A.;Lippi M.;
2020
Abstract
Deep learning is bringing remarkable contributions to the field of argumentation mining, but the existing approaches still need to fill the gap toward performing advanced reasoning tasks. In this position paper, we posit that neural-symbolic and statistical relational learning could play a crucial role in the integration of symbolic and sub-symbolic methods to achieve this goal.File | Dimensione | Formato | |
---|---|---|---|
fdata-02-00052.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
394.97 kB
Formato
Adobe PDF
|
394.97 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris