Bone substitute biomaterials (BSBs) represent a promising alternative to bone autografts, due to their biocompatibility, osteoconduction, slow resorption rates, and the ability to define and maintain volume for bone gain in dentistry. Many biomaterials are tailored to provide structural and biological support for bone regeneration, and allow the migration of bone-forming cells into the bone defect. Neural crest-derived stem cells isolated from human dental pulp (hDPSCs) represent a suitable stem cell source to study the biological effects of BSBs on osteoprogenitor cells involved in the physiological bone regenerative processes. This study aimed to evaluate how three different BSBs affect the stem cell properties, osteogenic differentiation, and inflammatory properties of hDPSCs. Our data highlight that BSBs do not alter cell proliferation and stemness markers expression, nor induce any inflammatory responses. Bone metabolism data show that hDPSCs exposed to the three BSBs distinctively secrete the factors supporting osteoblast activity and osteoclast activity. Our data indicate that (i) hDPSCs are a suitable stem cell source to study the effects of BSBs, and that (ii) the formulation of BSBs may condition the biological properties of stem cells, suggesting their versatile suitability to different dentistry applications.

Characterization of Dental Pulp Stem Cells Response to Bone Substitutes Biomaterials in Dentistry / Di Tinco, R.; Consolo, U.; Pisciotta, A.; Orlandi, G.; Bertani, G.; Nasi, M.; Bertacchini, J.; Carnevale, G.. - In: POLYMERS. - ISSN 2073-4360. - 14:11(2022), pp. 1-15. [10.3390/polym14112223]

Characterization of Dental Pulp Stem Cells Response to Bone Substitutes Biomaterials in Dentistry

Di Tinco R.;Consolo U.;Pisciotta A.;Orlandi G.;Nasi M.;Bertacchini J.;Carnevale G.
2022

Abstract

Bone substitute biomaterials (BSBs) represent a promising alternative to bone autografts, due to their biocompatibility, osteoconduction, slow resorption rates, and the ability to define and maintain volume for bone gain in dentistry. Many biomaterials are tailored to provide structural and biological support for bone regeneration, and allow the migration of bone-forming cells into the bone defect. Neural crest-derived stem cells isolated from human dental pulp (hDPSCs) represent a suitable stem cell source to study the biological effects of BSBs on osteoprogenitor cells involved in the physiological bone regenerative processes. This study aimed to evaluate how three different BSBs affect the stem cell properties, osteogenic differentiation, and inflammatory properties of hDPSCs. Our data highlight that BSBs do not alter cell proliferation and stemness markers expression, nor induce any inflammatory responses. Bone metabolism data show that hDPSCs exposed to the three BSBs distinctively secrete the factors supporting osteoblast activity and osteoclast activity. Our data indicate that (i) hDPSCs are a suitable stem cell source to study the effects of BSBs, and that (ii) the formulation of BSBs may condition the biological properties of stem cells, suggesting their versatile suitability to different dentistry applications.
2022
14
11
1
15
Characterization of Dental Pulp Stem Cells Response to Bone Substitutes Biomaterials in Dentistry / Di Tinco, R.; Consolo, U.; Pisciotta, A.; Orlandi, G.; Bertani, G.; Nasi, M.; Bertacchini, J.; Carnevale, G.. - In: POLYMERS. - ISSN 2073-4360. - 14:11(2022), pp. 1-15. [10.3390/polym14112223]
Di Tinco, R.; Consolo, U.; Pisciotta, A.; Orlandi, G.; Bertani, G.; Nasi, M.; Bertacchini, J.; Carnevale, G.
File in questo prodotto:
File Dimensione Formato  
polymers-14-02223-v3.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 3.11 MB
Formato Adobe PDF
3.11 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1286213
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact