We consider a distributed computation problem over a multiple access channel (MAC), with N devices. It is known that over-the-air computation (OAC) can provide significant gains for this problem, but existing works are limited to the scenario with matched source and channel bandwidths. We propose OAC schemes for block-fading MACs that modulate the source to fit the available channel bandwidth in a wideband channel, while having channel state information (CSI) only at the transmitter or the receiver. Our results show that the proposed OAC scheme outperforms even ideal capacity-achieving digital schemes when the CSI is available only at the transmitter, and the distortion does not scale with the number of participating devices. We demonstrate the effectiveness of our proposed scheme in federated edge learning (FEEL), where OAC is used to aggregate model updates from the participating devices.

Bandwidth Expansion for Over-the-Air Computation with One-Sided CSI / Mital, N.; Gunduz, D.. - 2022-:(2022), pp. 1271-1276. (Intervento presentato al convegno 2022 IEEE International Symposium on Information Theory, ISIT 2022 tenutosi a fin nel 2022) [10.1109/ISIT50566.2022.9834270].

Bandwidth Expansion for Over-the-Air Computation with One-Sided CSI

Gunduz D.
2022

Abstract

We consider a distributed computation problem over a multiple access channel (MAC), with N devices. It is known that over-the-air computation (OAC) can provide significant gains for this problem, but existing works are limited to the scenario with matched source and channel bandwidths. We propose OAC schemes for block-fading MACs that modulate the source to fit the available channel bandwidth in a wideband channel, while having channel state information (CSI) only at the transmitter or the receiver. Our results show that the proposed OAC scheme outperforms even ideal capacity-achieving digital schemes when the CSI is available only at the transmitter, and the distortion does not scale with the number of participating devices. We demonstrate the effectiveness of our proposed scheme in federated edge learning (FEEL), where OAC is used to aggregate model updates from the participating devices.
2022
2022 IEEE International Symposium on Information Theory, ISIT 2022
fin
2022
2022-
1271
1276
Mital, N.; Gunduz, D.
Bandwidth Expansion for Over-the-Air Computation with One-Sided CSI / Mital, N.; Gunduz, D.. - 2022-:(2022), pp. 1271-1276. (Intervento presentato al convegno 2022 IEEE International Symposium on Information Theory, ISIT 2022 tenutosi a fin nel 2022) [10.1109/ISIT50566.2022.9834270].
File in questo prodotto:
File Dimensione Formato  
Bandwidth_Expansion_for_Over-the-Air_Computation_with_One-Sided_CSI.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1286028
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact