We present a semi-decentralized federated learning algorithm wherein clients collaborate by relaying their neighbors' local updates to a central parameter server (PS). At every communication round to the PS, each client computes a local consensus of the updates from its neighboring clients and eventually transmits a weighted average of its own update and those of its neighbors to the PS. We appropriately optimize these averaging weights to ensure that the global update at the PS is unbiased and to reduce the variance of the global update at the PS, consequently improving the rate of convergence. Numerical simulations substantiate our theoretical claims and demonstrate settings with intermittent connectivity between the clients and the PS, where our proposed algorithm shows an improved convergence rate and accuracy in comparison with the federated averaging algorithm.

Semi-Decentralized Federated Learning with Collaborative Relaying / Yemini, M.; Saha, R.; Ozfatura, E.; Gunduz, D.; Goldsmith, A. J.. - 2022-:(2022), pp. 1471-1476. (Intervento presentato al convegno 2022 IEEE International Symposium on Information Theory, ISIT 2022 tenutosi a fin nel 2022) [10.1109/ISIT50566.2022.9834707].

Semi-Decentralized Federated Learning with Collaborative Relaying

Gunduz D.;
2022

Abstract

We present a semi-decentralized federated learning algorithm wherein clients collaborate by relaying their neighbors' local updates to a central parameter server (PS). At every communication round to the PS, each client computes a local consensus of the updates from its neighboring clients and eventually transmits a weighted average of its own update and those of its neighbors to the PS. We appropriately optimize these averaging weights to ensure that the global update at the PS is unbiased and to reduce the variance of the global update at the PS, consequently improving the rate of convergence. Numerical simulations substantiate our theoretical claims and demonstrate settings with intermittent connectivity between the clients and the PS, where our proposed algorithm shows an improved convergence rate and accuracy in comparison with the federated averaging algorithm.
2022
2022 IEEE International Symposium on Information Theory, ISIT 2022
fin
2022
2022-
1471
1476
Yemini, M.; Saha, R.; Ozfatura, E.; Gunduz, D.; Goldsmith, A. J.
Semi-Decentralized Federated Learning with Collaborative Relaying / Yemini, M.; Saha, R.; Ozfatura, E.; Gunduz, D.; Goldsmith, A. J.. - 2022-:(2022), pp. 1471-1476. (Intervento presentato al convegno 2022 IEEE International Symposium on Information Theory, ISIT 2022 tenutosi a fin nel 2022) [10.1109/ISIT50566.2022.9834707].
File in questo prodotto:
File Dimensione Formato  
Semi-Decentralized_Federated_Learning_with_Collaborative_Relaying.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1286023
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact