We present a semi-decentralized federated learning algorithm wherein clients collaborate by relaying their neighbors' local updates to a central parameter server (PS). At every communication round to the PS, each client computes a local consensus of the updates from its neighboring clients and eventually transmits a weighted average of its own update and those of its neighbors to the PS. We appropriately optimize these averaging weights to ensure that the global update at the PS is unbiased and to reduce the variance of the global update at the PS, consequently improving the rate of convergence. Numerical simulations substantiate our theoretical claims and demonstrate settings with intermittent connectivity between the clients and the PS, where our proposed algorithm shows an improved convergence rate and accuracy in comparison with the federated averaging algorithm.
Semi-Decentralized Federated Learning with Collaborative Relaying / Yemini, M.; Saha, R.; Ozfatura, E.; Gunduz, D.; Goldsmith, A. J.. - 2022-:(2022), pp. 1471-1476. (Intervento presentato al convegno 2022 IEEE International Symposium on Information Theory, ISIT 2022 tenutosi a fin nel 2022) [10.1109/ISIT50566.2022.9834707].
Semi-Decentralized Federated Learning with Collaborative Relaying
Gunduz D.;
2022
Abstract
We present a semi-decentralized federated learning algorithm wherein clients collaborate by relaying their neighbors' local updates to a central parameter server (PS). At every communication round to the PS, each client computes a local consensus of the updates from its neighboring clients and eventually transmits a weighted average of its own update and those of its neighbors to the PS. We appropriately optimize these averaging weights to ensure that the global update at the PS is unbiased and to reduce the variance of the global update at the PS, consequently improving the rate of convergence. Numerical simulations substantiate our theoretical claims and demonstrate settings with intermittent connectivity between the clients and the PS, where our proposed algorithm shows an improved convergence rate and accuracy in comparison with the federated averaging algorithm.File | Dimensione | Formato | |
---|---|---|---|
Semi-Decentralized_Federated_Learning_with_Collaborative_Relaying.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris