We propose a nested primal–dual algorithm with extrapolation on the primal variable suited for minimizing the sum of two convex functions, one of which is continuously differentiable. The proposed algorithm can be interpreted as an inexact inertial forward–backward algorithm equipped with a prefixed number of inner primal–dual iterations for the proximal evaluation and a “warm–start” strategy for starting the inner loop, and generalizes several nested primal–dual algorithms already available in the literature. By appropriately choosing the inertial parameters, we prove the convergence of the iterates to a saddle point of the problem, and provide an O(1/n) convergence rate on the primal–dual gap evaluated at the corresponding ergodic sequences. Numerical experiments on some image restoration problems show that the combination of the “warm–start” strategy with an appropriate choice of the inertial parameters is strictly required in order to guarantee the convergence to the real minimum point of the objective function.

A nested primal-dual FISTA-like scheme for composite convex optimization problems / Bonettini, S.; Prato, M.; Rebegoldi, S.. - In: COMPUTATIONAL OPTIMIZATION AND APPLICATIONS. - ISSN 0926-6003. - 84:1(2022), pp. 85-123. [10.1007/s10589-022-00410-x]

A nested primal-dual FISTA-like scheme for composite convex optimization problems

Bonettini, S.;Prato, M.;Rebegoldi, S.
2022

Abstract

We propose a nested primal–dual algorithm with extrapolation on the primal variable suited for minimizing the sum of two convex functions, one of which is continuously differentiable. The proposed algorithm can be interpreted as an inexact inertial forward–backward algorithm equipped with a prefixed number of inner primal–dual iterations for the proximal evaluation and a “warm–start” strategy for starting the inner loop, and generalizes several nested primal–dual algorithms already available in the literature. By appropriately choosing the inertial parameters, we prove the convergence of the iterates to a saddle point of the problem, and provide an O(1/n) convergence rate on the primal–dual gap evaluated at the corresponding ergodic sequences. Numerical experiments on some image restoration problems show that the combination of the “warm–start” strategy with an appropriate choice of the inertial parameters is strictly required in order to guarantee the convergence to the real minimum point of the objective function.
2022
84
1
85
123
A nested primal-dual FISTA-like scheme for composite convex optimization problems / Bonettini, S.; Prato, M.; Rebegoldi, S.. - In: COMPUTATIONAL OPTIMIZATION AND APPLICATIONS. - ISSN 0926-6003. - 84:1(2022), pp. 85-123. [10.1007/s10589-022-00410-x]
Bonettini, S.; Prato, M.; Rebegoldi, S.
File in questo prodotto:
File Dimensione Formato  
s10589-022-00410-x.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 5.65 MB
Formato Adobe PDF
5.65 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1285584
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact