We adapt and extend Yosida's parametrix method, originally introduced for the construction of the fundamental solution to a parabolic operator on a Riemannian manifold, to derive Varadhan-type asymptotic estimates for the transition density of a degenerate diffusion under the weak Hörmander condition. This diffusion process, widely studied by Yor in a series of papers, finds direct application in the study of a class of path-dependent financial derivatives known as Asian options. We obtain a Varadhan-type formula which relates the transition density p of the stochastic process with the optimal cost Ψ of a deterministic control problem associated to the diffusion. We provide a partial proof of this formula, and present numerical evidence to support the validity of an intermediate inequality that is required to complete the proof. We also derive an asymptotic expansion of the cost function Ψ, expressed in terms of elementary functions, which is useful in order to design efficient approximation formulas for the transition density.

A Yosida's parametrix approach to Varadhan's estimates for a degenerate diffusion under the weak Hörmander condition / Pagliarani, S.; Polidoro, S.. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 517:1(2023), pp. 1-42. [10.1016/j.jmaa.2022.126538]

A Yosida's parametrix approach to Varadhan's estimates for a degenerate diffusion under the weak Hörmander condition

Polidoro S.
Membro del Collaboration Group
2023

Abstract

We adapt and extend Yosida's parametrix method, originally introduced for the construction of the fundamental solution to a parabolic operator on a Riemannian manifold, to derive Varadhan-type asymptotic estimates for the transition density of a degenerate diffusion under the weak Hörmander condition. This diffusion process, widely studied by Yor in a series of papers, finds direct application in the study of a class of path-dependent financial derivatives known as Asian options. We obtain a Varadhan-type formula which relates the transition density p of the stochastic process with the optimal cost Ψ of a deterministic control problem associated to the diffusion. We provide a partial proof of this formula, and present numerical evidence to support the validity of an intermediate inequality that is required to complete the proof. We also derive an asymptotic expansion of the cost function Ψ, expressed in terms of elementary functions, which is useful in order to design efficient approximation formulas for the transition density.
2023
5-ago-2022
517
1
1
42
A Yosida's parametrix approach to Varadhan's estimates for a degenerate diffusion under the weak Hörmander condition / Pagliarani, S.; Polidoro, S.. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 517:1(2023), pp. 1-42. [10.1016/j.jmaa.2022.126538]
Pagliarani, S.; Polidoro, S.
File in questo prodotto:
File Dimensione Formato  
Yoshida-ArXiv.pdf

Open access

Descrizione: Preprint
Tipologia: Versione originale dell'autore proposta per la pubblicazione
Dimensione 604.67 kB
Formato Adobe PDF
604.67 kB Adobe PDF Visualizza/Apri
PagliaraniPolidoro-JMAA-2022.pdf

embargo fino al 01/01/2025

Descrizione: Articolo
Tipologia: Versione pubblicata dall'editore
Dimensione 798.03 kB
Formato Adobe PDF
798.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1285004
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact