This study investigates the biological effects on a 3D scaffold based on hydroxyapatite cultured with MC3T3 osteoblasts in response to flow-induced shear stress (FSS). The scaffold adopted here (B-HA) derives from the biomorphic transformation of natural wood and its peculiar channel geometry mimics the porous structure of the bone. From the point of view of fluid dynamics, B-HA can be considered a network of micro-channels, intrinsically offering the advantages of a microfluidic system. This work, for the first time, offers a description of the fluid dynamic properties of the B-HA scaffold, which are strongly connected to its morphology. These features are necessary to determine the FSS ranges to be applied during in vitro studies to get physiologically relevant conditions. The selected ranges of FSS promoted the elongation of the attached cells along the flow direction and early osteogenic cell differentiation. These data confirmed the ability of B-HA to promote the differentiation process along osteogenic lineage. Hence, such a bioactive and naturally derived scaffold can be considered as a promising tool for bone regeneration applications.

Liquid flow in scaffold derived from natural source: Experimental observations and biological outcome / Salerno, E.; Orlandi, G.; Ongaro, C.; D'Adamo, A.; Ruffini, A.; Carnevale, G.; Zardin, B.; Bertacchini, J.; Angeli, D.. - In: REGENERATIVE BIOMATERIALS. - ISSN 2056-3426. - 9:(2022), pp. 1-10. [10.1093/rb/rbac034]

Liquid flow in scaffold derived from natural source: Experimental observations and biological outcome

Salerno E.;Orlandi G.;D'Adamo A.;Ruffini A.;Carnevale G.;Zardin B.;Bertacchini J.;Angeli D.
2022-01-01

Abstract

This study investigates the biological effects on a 3D scaffold based on hydroxyapatite cultured with MC3T3 osteoblasts in response to flow-induced shear stress (FSS). The scaffold adopted here (B-HA) derives from the biomorphic transformation of natural wood and its peculiar channel geometry mimics the porous structure of the bone. From the point of view of fluid dynamics, B-HA can be considered a network of micro-channels, intrinsically offering the advantages of a microfluidic system. This work, for the first time, offers a description of the fluid dynamic properties of the B-HA scaffold, which are strongly connected to its morphology. These features are necessary to determine the FSS ranges to be applied during in vitro studies to get physiologically relevant conditions. The selected ranges of FSS promoted the elongation of the attached cells along the flow direction and early osteogenic cell differentiation. These data confirmed the ability of B-HA to promote the differentiation process along osteogenic lineage. Hence, such a bioactive and naturally derived scaffold can be considered as a promising tool for bone regeneration applications.
9
1
10
Liquid flow in scaffold derived from natural source: Experimental observations and biological outcome / Salerno, E.; Orlandi, G.; Ongaro, C.; D'Adamo, A.; Ruffini, A.; Carnevale, G.; Zardin, B.; Bertacchini, J.; Angeli, D.. - In: REGENERATIVE BIOMATERIALS. - ISSN 2056-3426. - 9:(2022), pp. 1-10. [10.1093/rb/rbac034]
Salerno, E.; Orlandi, G.; Ongaro, C.; D'Adamo, A.; Ruffini, A.; Carnevale, G.; Zardin, B.; Bertacchini, J.; Angeli, D.
File in questo prodotto:
File Dimensione Formato  
rbac034.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1284825
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact