Epidermal homeostasis relies on a well-defined transcriptional control of keratinocyte proliferation and differentiation, which is critical to prevent skin diseases such as atopic dermatitis, psoriasis or cancer. We have recently shown that the homeobox transcription factor DLX3 and the tumor suppressor p53 co-regulate cell cycle-related signaling and that this mechanism is functionally involved in cutaneous squamous cell carcinoma development. Here we show that DLX3 expression and its downstream signaling depend on protein kinase C alpha (PKC alpha) activity in skin. We found that following 12-O-tetradecanoyl-phorbol-13-acetate (TPA) topical treatment, DLX3 expression is significantly upregulated in the epidermis and keratinocytes from mice overexpressing PKC alpha by transgenic targeting (K5-PKC alpha), resulting in cell cycle block and terminal differentiation. Epidermis lacking DLX3 (DLX3cKO), which is linked to the development of a DLX3-dependent epidermal hyperplasia with hyperkeratosis and dermal leukocyte recruitment, displays enhanced PKC alpha activation, suggesting a feedback regulation of DLX3 and PKC alpha. Of particular significance, transcriptional activation of epidermal barrier, antimicrobial peptide and cytokine genes is significantly increased in DLX3cKO skin and further increased by TPA-dependent PKC activation. Furthermore, when inhibiting PKC activity, we show that epidermal thickness, keratinocyte proliferation and inflammatory cell infiltration are reduced and the PKC-DLX3-dependent gene expression signature is normalized. Independently of PKC, DLX3 expression specifically modulates regulatory networks such as Wnt signaling, phosphatase activity and cell adhesion. Chromatin immunoprecipitation sequencing analysis of primary suprabasal keratinocytes showed binding of DLX3 to the proximal promoter regions of genes associated with cell cycle regulation, and of structural proteins and transcription factors involved in epidermal differentiation. These results indicate that Dlx3 potentially regulates a set of crucial genes necessary during the epidermal differentiation process. Altogether, we demonstrate the existence of a robust DLX3-PKC alpha signaling pathway in keratinocytes that is crucial to epidermal differentiation control and cutaneous homeostasis.

A novel DLX3-PKC integrated signaling network drives keratinocyte differentiation / Palazzo, E; Kellett, Md; Cataisson, C; Bible, Pw; Bhattacharya, S; Sun, Hw; Gormley, Ac; Yuspa, Sh; Morasso, Mi. - In: CELL DEATH AND DIFFERENTIATION. - ISSN 1350-9047. - 24:4(2017), pp. 717-730. [10.1038/cdd.2017.5]

A novel DLX3-PKC integrated signaling network drives keratinocyte differentiation

Palazzo, E;
2017-01-01

Abstract

Epidermal homeostasis relies on a well-defined transcriptional control of keratinocyte proliferation and differentiation, which is critical to prevent skin diseases such as atopic dermatitis, psoriasis or cancer. We have recently shown that the homeobox transcription factor DLX3 and the tumor suppressor p53 co-regulate cell cycle-related signaling and that this mechanism is functionally involved in cutaneous squamous cell carcinoma development. Here we show that DLX3 expression and its downstream signaling depend on protein kinase C alpha (PKC alpha) activity in skin. We found that following 12-O-tetradecanoyl-phorbol-13-acetate (TPA) topical treatment, DLX3 expression is significantly upregulated in the epidermis and keratinocytes from mice overexpressing PKC alpha by transgenic targeting (K5-PKC alpha), resulting in cell cycle block and terminal differentiation. Epidermis lacking DLX3 (DLX3cKO), which is linked to the development of a DLX3-dependent epidermal hyperplasia with hyperkeratosis and dermal leukocyte recruitment, displays enhanced PKC alpha activation, suggesting a feedback regulation of DLX3 and PKC alpha. Of particular significance, transcriptional activation of epidermal barrier, antimicrobial peptide and cytokine genes is significantly increased in DLX3cKO skin and further increased by TPA-dependent PKC activation. Furthermore, when inhibiting PKC activity, we show that epidermal thickness, keratinocyte proliferation and inflammatory cell infiltration are reduced and the PKC-DLX3-dependent gene expression signature is normalized. Independently of PKC, DLX3 expression specifically modulates regulatory networks such as Wnt signaling, phosphatase activity and cell adhesion. Chromatin immunoprecipitation sequencing analysis of primary suprabasal keratinocytes showed binding of DLX3 to the proximal promoter regions of genes associated with cell cycle regulation, and of structural proteins and transcription factors involved in epidermal differentiation. These results indicate that Dlx3 potentially regulates a set of crucial genes necessary during the epidermal differentiation process. Altogether, we demonstrate the existence of a robust DLX3-PKC alpha signaling pathway in keratinocytes that is crucial to epidermal differentiation control and cutaneous homeostasis.
24
4
717
730
A novel DLX3-PKC integrated signaling network drives keratinocyte differentiation / Palazzo, E; Kellett, Md; Cataisson, C; Bible, Pw; Bhattacharya, S; Sun, Hw; Gormley, Ac; Yuspa, Sh; Morasso, Mi. - In: CELL DEATH AND DIFFERENTIATION. - ISSN 1350-9047. - 24:4(2017), pp. 717-730. [10.1038/cdd.2017.5]
Palazzo, E; Kellett, Md; Cataisson, C; Bible, Pw; Bhattacharya, S; Sun, Hw; Gormley, Ac; Yuspa, Sh; Morasso, Mi
File in questo prodotto:
File Dimensione Formato  
cdd20175.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 8.94 MB
Formato Adobe PDF
8.94 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1284406
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 21
social impact