We prove a decomposition theorem for closed connected homotopy equivalent smooth four-manifolds, which partially extends a recent result of Curtis et al. (1996) to the non-simply connected case. Then we study the question of when a homotopy equivalence between closed smooth 4-manifolds is homotopic to a topological homeomorphism. In particular, we obtain a new proof of the well-known uniqueness of closed aspherical smooth 4-manifolds with good fundamental groups.

A splitting theorem for homotopy equivalent smooth 4-manifolds / Cavicchioli, Alberto; F., Hegenbarth; Spaggiari, Fulvia. - In: RENDICONTI DI MATEMATICA E DELLE SUE APPLICAZIONI. - ISSN 1120-7183. - STAMPA. - 17 Serie VII:(1997), pp. 523-539.

A splitting theorem for homotopy equivalent smooth 4-manifolds

CAVICCHIOLI, Alberto;SPAGGIARI, Fulvia
1997

Abstract

We prove a decomposition theorem for closed connected homotopy equivalent smooth four-manifolds, which partially extends a recent result of Curtis et al. (1996) to the non-simply connected case. Then we study the question of when a homotopy equivalence between closed smooth 4-manifolds is homotopic to a topological homeomorphism. In particular, we obtain a new proof of the well-known uniqueness of closed aspherical smooth 4-manifolds with good fundamental groups.
1997
17 Serie VII
523
539
A splitting theorem for homotopy equivalent smooth 4-manifolds / Cavicchioli, Alberto; F., Hegenbarth; Spaggiari, Fulvia. - In: RENDICONTI DI MATEMATICA E DELLE SUE APPLICAZIONI. - ISSN 1120-7183. - STAMPA. - 17 Serie VII:(1997), pp. 523-539.
Cavicchioli, Alberto; F., Hegenbarth; Spaggiari, Fulvia
File in questo prodotto:
File Dimensione Formato  
523-539.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 807.65 kB
Formato Adobe PDF
807.65 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/12839
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact