Since February 2020, the COVID-19 epidemic has rapidly spread throughout Italy. Some studies showed an association of environmental factors, such as PM10, PM2.5, NO2, temperature, relative humidity, wind speed, solar radiation and mobility with the spread of the epidemic. In this work, we aimed to predict via Deep Learning the real-time transmission of SARS-CoV-2 in the province of Reggio Emilia, Northern Italy, in a grid with a small resolution (12 km × 12 km), including satellite information.

A deep learning approach for Spatio-Temporal forecasting of new cases and new hospital admissions of COVID-19 spread in Reggio Emilia, Northern Italy / Sciannameo, Veronica; Goffi, Alessia; Maffeis, Giuseppe; Gianfreda, Roberta; Jahier Pagliari, Daniele; Filippini, Tommaso; Mancuso, Pamela; Giorgi Rossi, Paolo; Dal Zovo, Leonardo Alberto; Corbari, Angela; Vinceti, Marco; Berchialla, Paola. - In: JOURNAL OF BIOMEDICAL INFORMATICS. - ISSN 1532-0464. - 132:(2022), pp. 1-9. [10.1016/j.jbi.2022.104132]

A deep learning approach for Spatio-Temporal forecasting of new cases and new hospital admissions of COVID-19 spread in Reggio Emilia, Northern Italy

Filippini, Tommaso;Vinceti, Marco;
2022

Abstract

Since February 2020, the COVID-19 epidemic has rapidly spread throughout Italy. Some studies showed an association of environmental factors, such as PM10, PM2.5, NO2, temperature, relative humidity, wind speed, solar radiation and mobility with the spread of the epidemic. In this work, we aimed to predict via Deep Learning the real-time transmission of SARS-CoV-2 in the province of Reggio Emilia, Northern Italy, in a grid with a small resolution (12 km × 12 km), including satellite information.
132
1
9
A deep learning approach for Spatio-Temporal forecasting of new cases and new hospital admissions of COVID-19 spread in Reggio Emilia, Northern Italy / Sciannameo, Veronica; Goffi, Alessia; Maffeis, Giuseppe; Gianfreda, Roberta; Jahier Pagliari, Daniele; Filippini, Tommaso; Mancuso, Pamela; Giorgi Rossi, Paolo; Dal Zovo, Leonardo Alberto; Corbari, Angela; Vinceti, Marco; Berchialla, Paola. - In: JOURNAL OF BIOMEDICAL INFORMATICS. - ISSN 1532-0464. - 132:(2022), pp. 1-9. [10.1016/j.jbi.2022.104132]
Sciannameo, Veronica; Goffi, Alessia; Maffeis, Giuseppe; Gianfreda, Roberta; Jahier Pagliari, Daniele; Filippini, Tommaso; Mancuso, Pamela; Giorgi Rossi, Paolo; Dal Zovo, Leonardo Alberto; Corbari, Angela; Vinceti, Marco; Berchialla, Paola
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1532046422001484-main.pdf

accesso aperto

Tipologia: Versione dell'editore (versione pubblicata)
Dimensione 3.34 MB
Formato Adobe PDF
3.34 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1283880
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact