Since February 2020, the COVID-19 epidemic has rapidly spread throughout Italy. Some studies showed an association of environmental factors, such as PM10, PM2.5, NO2, temperature, relative humidity, wind speed, solar radiation and mobility with the spread of the epidemic. In this work, we aimed to predict via Deep Learning the real-time transmission of SARS-CoV-2 in the province of Reggio Emilia, Northern Italy, in a grid with a small resolution (12 km × 12 km), including satellite information.
A deep learning approach for Spatio-Temporal forecasting of new cases and new hospital admissions of COVID-19 spread in Reggio Emilia, Northern Italy / Sciannameo, Veronica; Goffi, Alessia; Maffeis, Giuseppe; Gianfreda, Roberta; Jahier Pagliari, Daniele; Filippini, Tommaso; Mancuso, Pamela; Giorgi Rossi, Paolo; Dal Zovo, Leonardo Alberto; Corbari, Angela; Vinceti, Marco; Berchialla, Paola. - In: JOURNAL OF BIOMEDICAL INFORMATICS. - ISSN 1532-0464. - 132:(2022), pp. 1-9. [10.1016/j.jbi.2022.104132]
A deep learning approach for Spatio-Temporal forecasting of new cases and new hospital admissions of COVID-19 spread in Reggio Emilia, Northern Italy
Filippini, Tommaso;Vinceti, Marco;
2022
Abstract
Since February 2020, the COVID-19 epidemic has rapidly spread throughout Italy. Some studies showed an association of environmental factors, such as PM10, PM2.5, NO2, temperature, relative humidity, wind speed, solar radiation and mobility with the spread of the epidemic. In this work, we aimed to predict via Deep Learning the real-time transmission of SARS-CoV-2 in the province of Reggio Emilia, Northern Italy, in a grid with a small resolution (12 km × 12 km), including satellite information.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S1532046422001484-main.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
3.34 MB
Formato
Adobe PDF
|
3.34 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris