The work investigates the static pull-in instability of electrostatically actuated tweezers with tubular electrodes. At a critical voltage, named pull-in voltage, the attraction force between the two electrodes causes the unexpected pull-in of the tubular cantilevers, which defines the limit of the elastic region of the system, especially in the case of carbon-nano tubes (CNTs) applications. The work aims to evaluate the lower and upper bounds of pull-in parameters of a tweezer device with the use of an accurate analytical model which allows to calculate the critical voltage and deflection values of the system. In order to assess the accuracy of the analytical model, we built a prototype and measured the critical pull-in voltage for different geometrical configurations of the device. The experimental results confirm the analytical predictions, with a maximum relative difference between the experimental and analytical values of the pull-in voltage lower than 13%.

Electrostatic pull‑in instability for tweezer architectures / Bianchi, G.; Sorrentino, A.; Radi, E.; Castagnetti, D.. - In: MECCANICA. - ISSN 0025-6455. - 57:8(2022), pp. 1767-1781. [10.1007/s11012-022-01546-0]

Electrostatic pull‑in instability for tweezer architectures

A. Sorrentino;E. Radi;D. Castagnetti
2022

Abstract

The work investigates the static pull-in instability of electrostatically actuated tweezers with tubular electrodes. At a critical voltage, named pull-in voltage, the attraction force between the two electrodes causes the unexpected pull-in of the tubular cantilevers, which defines the limit of the elastic region of the system, especially in the case of carbon-nano tubes (CNTs) applications. The work aims to evaluate the lower and upper bounds of pull-in parameters of a tweezer device with the use of an accurate analytical model which allows to calculate the critical voltage and deflection values of the system. In order to assess the accuracy of the analytical model, we built a prototype and measured the critical pull-in voltage for different geometrical configurations of the device. The experimental results confirm the analytical predictions, with a maximum relative difference between the experimental and analytical values of the pull-in voltage lower than 13%.
2022
7-lug-2022
57
8
1767
1781
Electrostatic pull‑in instability for tweezer architectures / Bianchi, G.; Sorrentino, A.; Radi, E.; Castagnetti, D.. - In: MECCANICA. - ISSN 0025-6455. - 57:8(2022), pp. 1767-1781. [10.1007/s11012-022-01546-0]
Bianchi, G.; Sorrentino, A.; Radi, E.; Castagnetti, D.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1283059
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact