The traditional MTPA cannot satisfy the practical speed commands in traction application, the field weakening and reconfigurable topologies can achieve the speed extension. This paper provides a comparative summary of different reconfiguration topologies for speed extensions and provides a brief discussion of the previous research. Then, to evaluate the different topologies function, three models with the same output power are established to observe the performance. The experimental results represent the series/parallel configurations supply the lowest drive losses and highest efficiency without using the demagnetizing component. Meanwhile, the future study which combines the series/parallel configuration with field weakening is pointed out.
Review of Speed-Extension of Permanent Magnet Synchronous Motor with Reconfigurable-Winding System / Zhou, X.; Buticchi, G.; Migliazza, G.; Wang, S.; Galea, M.; Gerada, C.. - 2021-:(2021), pp. 1-6. (Intervento presentato al convegno 30th IEEE International Symposium on Industrial Electronics, ISIE 2021 tenutosi a Kyoto nel 2021) [10.1109/ISIE45552.2021.9576285].
Review of Speed-Extension of Permanent Magnet Synchronous Motor with Reconfigurable-Winding System
Migliazza G.;
2021
Abstract
The traditional MTPA cannot satisfy the practical speed commands in traction application, the field weakening and reconfigurable topologies can achieve the speed extension. This paper provides a comparative summary of different reconfiguration topologies for speed extensions and provides a brief discussion of the previous research. Then, to evaluate the different topologies function, three models with the same output power are established to observe the performance. The experimental results represent the series/parallel configurations supply the lowest drive losses and highest efficiency without using the demagnetizing component. Meanwhile, the future study which combines the series/parallel configuration with field weakening is pointed out.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris