The role of thiourea as an organic additive in the nucleation and growth mechanism was studied for copper deposition and its application in the decorative electroplating and fashion accessory industries. The bath was designed to reduce the environmental and ecological impacts using methanesulfonic acid as electrolyte as an alternative to alkaline cyanide baths. We evaluated the nucleation and growth mechanism of copper exploiting voltametric and chronoamperometric measurements with a brightener concentration ranging from 0 to 90 ppm. We used the Scharifker– Hills model to estimate the type of nucleation mechanism after progressive addition of thiourea. Scanning electron microscope was employed for surface analysis and morphological characterisation of the nuclei. We verified that progressive nucleation is a key step in the obtainment of a shiny and homogeneous copper film, but an excess of thiourea could cause parasitic adsorption reactions on the surface of the substrate. X-ray fluorescence spectroscopy was used for the thickness determination of the copper deposits and the electrodeposition efficiency correlated to thiourea concentration. Finally, the optimal concentration of thiourea was assessed to be 60 ppm for the used formulation of copper plating.

Optimisation of Thiourea Concentration in a Decorative Copper Plating Acid Bath Based on Methanesulfonic Electrolyte / Fabbri, L.; Giurlani, W.; Mencherini, G.; De Luca, A.; Passaponti, M.; Piciollo, E.; Fontanesi, C.; Caneschi, A.; Innocenti, M.. - In: COATINGS. - ISSN 2079-6412. - 12:3(2022), pp. N/A-N/A. [10.3390/coatings12030376]

Optimisation of Thiourea Concentration in a Decorative Copper Plating Acid Bath Based on Methanesulfonic Electrolyte

Fontanesi C.;
2022

Abstract

The role of thiourea as an organic additive in the nucleation and growth mechanism was studied for copper deposition and its application in the decorative electroplating and fashion accessory industries. The bath was designed to reduce the environmental and ecological impacts using methanesulfonic acid as electrolyte as an alternative to alkaline cyanide baths. We evaluated the nucleation and growth mechanism of copper exploiting voltametric and chronoamperometric measurements with a brightener concentration ranging from 0 to 90 ppm. We used the Scharifker– Hills model to estimate the type of nucleation mechanism after progressive addition of thiourea. Scanning electron microscope was employed for surface analysis and morphological characterisation of the nuclei. We verified that progressive nucleation is a key step in the obtainment of a shiny and homogeneous copper film, but an excess of thiourea could cause parasitic adsorption reactions on the surface of the substrate. X-ray fluorescence spectroscopy was used for the thickness determination of the copper deposits and the electrodeposition efficiency correlated to thiourea concentration. Finally, the optimal concentration of thiourea was assessed to be 60 ppm for the used formulation of copper plating.
2022
12
3
N/A
N/A
Optimisation of Thiourea Concentration in a Decorative Copper Plating Acid Bath Based on Methanesulfonic Electrolyte / Fabbri, L.; Giurlani, W.; Mencherini, G.; De Luca, A.; Passaponti, M.; Piciollo, E.; Fontanesi, C.; Caneschi, A.; Innocenti, M.. - In: COATINGS. - ISSN 2079-6412. - 12:3(2022), pp. N/A-N/A. [10.3390/coatings12030376]
Fabbri, L.; Giurlani, W.; Mencherini, G.; De Luca, A.; Passaponti, M.; Piciollo, E.; Fontanesi, C.; Caneschi, A.; Innocenti, M.
File in questo prodotto:
File Dimensione Formato  
Optimisation of Thiourea Concentration in a Decorative Copper.pdf

Open access

Descrizione: Articolo
Tipologia: Versione pubblicata dall'editore
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1280907
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact