In this work we derive the Beveridge-Nelson decomposition and the state space representation for multivariate (co)integrated time series subject to Markov switching in regime. Then we provide explicit matrix expressions for the trend and cyclical components which improve computational performance since they are readily programmable. Further we develop impulse-response function analysis. Applications illustrate the feasibility of the proposed approach.

Trend and cycle decomposition in nonlinear time series / Cavicchioli, Maddalena. - (2022), pp. 1171-1176. (Intervento presentato al convegno SIS 2022 - 51th Scientific Meeting of the Italian Statistical Society tenutosi a Caserta, Italy nel 22-24 giugno 2022).

Trend and cycle decomposition in nonlinear time series

Cavicchioli maddalena
2022

Abstract

In this work we derive the Beveridge-Nelson decomposition and the state space representation for multivariate (co)integrated time series subject to Markov switching in regime. Then we provide explicit matrix expressions for the trend and cyclical components which improve computational performance since they are readily programmable. Further we develop impulse-response function analysis. Applications illustrate the feasibility of the proposed approach.
2022
SIS 2022 - 51th Scientific Meeting of the Italian Statistical Society
Caserta, Italy
22-24 giugno 2022
1171
1176
Cavicchioli, Maddalena
Trend and cycle decomposition in nonlinear time series / Cavicchioli, Maddalena. - (2022), pp. 1171-1176. (Intervento presentato al convegno SIS 2022 - 51th Scientific Meeting of the Italian Statistical Society tenutosi a Caserta, Italy nel 22-24 giugno 2022).
File in questo prodotto:
File Dimensione Formato  
3088-9597-1-DR.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 169.94 kB
Formato Adobe PDF
169.94 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1280729
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact