Efficient link configuration in millimeter wave (mmWave) communication systems is a crucial yet challenging task due to the overhead imposed by beam selection. For vehicle-to-infrastructure (V2I) networks, side information from LIDAR sensors mounted on the vehicles has been leveraged to reduce the beam search overhead. In this letter, we propose a federated LIDAR aided beam selection method for V2I mmWave communication systems. In the proposed scheme, connected vehicles collaborate to train a shared neural network (NN) on their locally available LIDAR data during normal operation of the system. We also propose a reduced-complexity convolutional NN (CNN) classifier architecture and LIDAR preprocessing, which significantly outperforms previous works in terms of both the performance and the complexity.

Federated mmWave Beam Selection Utilizing LIDAR Data / Mashhadi, M. B.; Jankowski, M.; Tung, T. -Y.; Kobus, S.; Gunduz, D.. - In: IEEE WIRELESS COMMUNICATIONS LETTERS. - ISSN 2162-2337. - 10:10(2021), pp. 2269-2273. [10.1109/LWC.2021.3099136]

Federated mmWave Beam Selection Utilizing LIDAR Data

Gunduz D.
2021-01-01

Abstract

Efficient link configuration in millimeter wave (mmWave) communication systems is a crucial yet challenging task due to the overhead imposed by beam selection. For vehicle-to-infrastructure (V2I) networks, side information from LIDAR sensors mounted on the vehicles has been leveraged to reduce the beam search overhead. In this letter, we propose a federated LIDAR aided beam selection method for V2I mmWave communication systems. In the proposed scheme, connected vehicles collaborate to train a shared neural network (NN) on their locally available LIDAR data during normal operation of the system. We also propose a reduced-complexity convolutional NN (CNN) classifier architecture and LIDAR preprocessing, which significantly outperforms previous works in terms of both the performance and the complexity.
10
10
2269
2273
Federated mmWave Beam Selection Utilizing LIDAR Data / Mashhadi, M. B.; Jankowski, M.; Tung, T. -Y.; Kobus, S.; Gunduz, D.. - In: IEEE WIRELESS COMMUNICATIONS LETTERS. - ISSN 2162-2337. - 10:10(2021), pp. 2269-2273. [10.1109/LWC.2021.3099136]
Mashhadi, M. B.; Jankowski, M.; Tung, T. -Y.; Kobus, S.; Gunduz, D.
File in questo prodotto:
File Dimensione Formato  
Federated_mmWave_Beam_Selection_Utilizing_LIDAR_Data.pdf

non disponibili

Tipologia: Versione pubblicata dall'editore
Dimensione 870.68 kB
Formato Adobe PDF
870.68 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2102.02802.pdf

Open access

Tipologia: Versione originale dell'autore proposta per la pubblicazione
Dimensione 550.57 kB
Formato Adobe PDF
550.57 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1280112
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact