In conventional federated learning (FL), differential privacy (DP) guarantees can be obtained by injecting additional noise to local model updates before transmitting to the parameter server (PS). In the wireless FL scenario, we show that the privacy of the system can be boosted by exploiting over-the-air computation (OAC) and anonymizing the transmitting devices. In OAC, devices transmit their model updates simultaneously and in an uncoded fashion, resulting in a much more efficient use of the available spectrum. We further exploit OAC to provide anonymity for the transmitting devices. The proposed approach improves the performance of private wireless FL by reducing the amount of noise that must be injected.

Private wireless federated learning with anonymous over-the-air computation / Hasircioglu, B.; Gunduz, D.. - 2021-:(2021), pp. 5195-5199. (Intervento presentato al convegno 2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021 tenutosi a can nel 2021) [10.1109/ICASSP39728.2021.9413624].

Private wireless federated learning with anonymous over-the-air computation

Gunduz D.
2021

Abstract

In conventional federated learning (FL), differential privacy (DP) guarantees can be obtained by injecting additional noise to local model updates before transmitting to the parameter server (PS). In the wireless FL scenario, we show that the privacy of the system can be boosted by exploiting over-the-air computation (OAC) and anonymizing the transmitting devices. In OAC, devices transmit their model updates simultaneously and in an uncoded fashion, resulting in a much more efficient use of the available spectrum. We further exploit OAC to provide anonymity for the transmitting devices. The proposed approach improves the performance of private wireless FL by reducing the amount of noise that must be injected.
2021
2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021
can
2021
2021-
5195
5199
Hasircioglu, B.; Gunduz, D.
Private wireless federated learning with anonymous over-the-air computation / Hasircioglu, B.; Gunduz, D.. - 2021-:(2021), pp. 5195-5199. (Intervento presentato al convegno 2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021 tenutosi a can nel 2021) [10.1109/ICASSP39728.2021.9413624].
File in questo prodotto:
File Dimensione Formato  
Private_Wireless_Federated_Learning_with_Anonymous_Over-the-Air_Computation.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 2 MB
Formato Adobe PDF
2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1280103
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 10
social impact