Conversion of free-standing graphene into pure graphane-where each C atom is sp3bound to a hydrogen atom-has not been achieved so far, in spite of numerous experimental attempts. Here, we obtain an unprecedented level of hydrogenation (≈90% of sp3bonds) by exposing fully free-standing nanoporous samples-constituted by a single to a few veils of smoothly rippled graphene-to atomic hydrogen in ultrahigh vacuum. Such a controlled hydrogenation of high-quality and high-specific-area samples converts the original conductive graphene into a wide gap semiconductor, with the valence band maximum (VBM) ∼3.5 eV below the Fermi level, as monitored by photoemission spectromicroscopy and confirmed by theoretical predictions. In fact, the calculated band structure unequivocally identifies the achievement of a stable, double-sided fully hydrogenated configuration, with gap opening and no trace of πstates, in excellent agreement with the experimental results.

Gap Opening in Double-Sided Highly Hydrogenated Free-Standing Graphene / Betti, M. G.; Placidi, E.; Izzo, C.; Blundo, E.; Polimeni, A.; Sbroscia, M.; Avila, J.; Dudin, P.; Hu, K.; Ito, Y.; Prezzi, D.; Bonacci, M.; Molinari, E.; Mariani, C.. - In: NANO LETTERS. - ISSN 1530-6984. - 22:7(2022), pp. 2971-2977. [10.1021/acs.nanolett.2c00162]

Gap Opening in Double-Sided Highly Hydrogenated Free-Standing Graphene

Bonacci M.;Molinari E.;
2022

Abstract

Conversion of free-standing graphene into pure graphane-where each C atom is sp3bound to a hydrogen atom-has not been achieved so far, in spite of numerous experimental attempts. Here, we obtain an unprecedented level of hydrogenation (≈90% of sp3bonds) by exposing fully free-standing nanoporous samples-constituted by a single to a few veils of smoothly rippled graphene-to atomic hydrogen in ultrahigh vacuum. Such a controlled hydrogenation of high-quality and high-specific-area samples converts the original conductive graphene into a wide gap semiconductor, with the valence band maximum (VBM) ∼3.5 eV below the Fermi level, as monitored by photoemission spectromicroscopy and confirmed by theoretical predictions. In fact, the calculated band structure unequivocally identifies the achievement of a stable, double-sided fully hydrogenated configuration, with gap opening and no trace of πstates, in excellent agreement with the experimental results.
2022
22
7
2971
2977
Gap Opening in Double-Sided Highly Hydrogenated Free-Standing Graphene / Betti, M. G.; Placidi, E.; Izzo, C.; Blundo, E.; Polimeni, A.; Sbroscia, M.; Avila, J.; Dudin, P.; Hu, K.; Ito, Y.; Prezzi, D.; Bonacci, M.; Molinari, E.; Mariani, C.. - In: NANO LETTERS. - ISSN 1530-6984. - 22:7(2022), pp. 2971-2977. [10.1021/acs.nanolett.2c00162]
Betti, M. G.; Placidi, E.; Izzo, C.; Blundo, E.; Polimeni, A.; Sbroscia, M.; Avila, J.; Dudin, P.; Hu, K.; Ito, Y.; Prezzi, D.; Bonacci, M.; Molinari, E.; Mariani, C.
File in questo prodotto:
File Dimensione Formato  
acs.nanolett.2c00162.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 3.5 MB
Formato Adobe PDF
3.5 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1279883
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact