This paper presents a version of neurophenomenology based on generative modelling techniques developed in computational neuroscience and biology. Our approach can be described as computational phenomenology because it applies methods originally developed in computational modelling to provide a formal model of the descriptions of lived experience in the phenomenological tradition of philosophy (e.g., the work of Edmund Husserl, Maurice Merleau-Ponty, etc.). The first section presents a brief review of the overall project to naturalize phenomenology. The second section presents and evaluates philosophical objections to that project and situates our version of computational phenomenology with respect to these projects. The third section reviews the generative modelling framework. The final section presents our approach in detail. We conclude by discussing how our approach differs from previous attempts to use generative modelling to help understand consciousness. In summary, we describe a version of computational phenomenology which uses generative modelling to construct a computational model of the inferential or interpretive processes that best explain this or that kind of lived experience.

From Generative Models to Generative Passages: A Computational Approach to (Neuro) Phenomenology / Ramstead, M. J. D.; Seth, A. K.; Hesp, C.; Sandved-Smith, L.; Mago, J.; Lifshitz, M.; Pagnoni, G.; Smith, R.; Dumas, G.; Lutz, A.; Friston, K.; Constant, A.. - In: REVIEW OF PHILOSOPHY AND PSYCHOLOGY. - ISSN 1878-5158. - 13:4(2022), pp. 829-857. [10.1007/s13164-021-00604-y]

From Generative Models to Generative Passages: A Computational Approach to (Neuro) Phenomenology

Pagnoni G.;
2022

Abstract

This paper presents a version of neurophenomenology based on generative modelling techniques developed in computational neuroscience and biology. Our approach can be described as computational phenomenology because it applies methods originally developed in computational modelling to provide a formal model of the descriptions of lived experience in the phenomenological tradition of philosophy (e.g., the work of Edmund Husserl, Maurice Merleau-Ponty, etc.). The first section presents a brief review of the overall project to naturalize phenomenology. The second section presents and evaluates philosophical objections to that project and situates our version of computational phenomenology with respect to these projects. The third section reviews the generative modelling framework. The final section presents our approach in detail. We conclude by discussing how our approach differs from previous attempts to use generative modelling to help understand consciousness. In summary, we describe a version of computational phenomenology which uses generative modelling to construct a computational model of the inferential or interpretive processes that best explain this or that kind of lived experience.
2022
13
4
829
857
From Generative Models to Generative Passages: A Computational Approach to (Neuro) Phenomenology / Ramstead, M. J. D.; Seth, A. K.; Hesp, C.; Sandved-Smith, L.; Mago, J.; Lifshitz, M.; Pagnoni, G.; Smith, R.; Dumas, G.; Lutz, A.; Friston, K.; Constant, A.. - In: REVIEW OF PHILOSOPHY AND PSYCHOLOGY. - ISSN 1878-5158. - 13:4(2022), pp. 829-857. [10.1007/s13164-021-00604-y]
Ramstead, M. J. D.; Seth, A. K.; Hesp, C.; Sandved-Smith, L.; Mago, J.; Lifshitz, M.; Pagnoni, G.; Smith, R.; Dumas, G.; Lutz, A.; Friston, K.; Consta...espandi
File in questo prodotto:
File Dimensione Formato  
Ramstead2022_Article_FromGenerativeModelsToGenerati.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1279493
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 28
social impact