Traditional de novo drug discovery is a long, expensive process that is often hampered by high failure rates. A viable alternative strategy is drug repurposing (or drug repositioning), defined as the identification of novel therapeutic indications for already known drugs or drug candidates, as well as synthetic and natural products. Drug repurposing allows to reduce times, risks and costs associated with traditional de novo discovery pipelines, as most compounds have in many cases already passed safety and toxicity studies. Moreover, in recent times the increase in biological, clinical and chemical data has enabled the progress of novel attractive drug repurposing opportunities. Accordingly, the large-scale use of integrated in silico approaches has proven to be an efficient and cost-effective strategy. However, to date there is still a large need for rational protocols and new methodologies to help researchers in this field. Based on these premises, the aim of the PhD project was focused on two main areas of in silico drug repurposing: i) the application of tailored protocols for specific repositioning campaigns; and ii) the development of novel methods and general approaches. During the PhD course, several applications of integrated protocols using different computational approaches were developed for the repositioning of products of both natural and synthetic origin. Data mining from well-known public databases allowed to perform 2D and 3D similarity estimations, and to select appropriate targets to perform in-depth molecular docking studies. Each protocol was customized taking into account the specific characteristics of the molecules under study. Finally, in vitro testing on isolated proteins or cells allowed to experimentally validate the predictions. At the same time, the PhD project focused on the development of innovative protocols capable of providing new assets to researchers working with drug repurposing. For instance, a machine learning (ML) based platform was developed to predict selectivity profiles across different enzyme isoforms. Moreover, the development of the LigAdvisor website, an integrated platform for repurposing and polypharmacology, was also carried out. The implemented projects provided highly satisfactory results. Indeed, over the three years it was possible to: reposition a library of compounds of synthetic origin, by identifying a potent human Carbonic Anhydrase (hCA) II inhibitor, and then design derivatives with dual activity on hCA and the Estrogen Receptors (ER); to reposition natural products on ERβ; to identify candidates for the inhibition of the SARS-CoV-2 main protease (Mpro). The machine learning hCA screening platform provided excellent predictive performances, which remarkably proved to be better than those obtained by other traditional approaches. Finally, the development of the freely accessible LigAdvisor website provides also non-experts in the field to retrieve a large amount of high quality data and perform a variety of different queries. In conclusion, the results reported in this dissertation demonstrate how the use of computational approaches, artificial intelligence and data mining techniques is indeed of great help in the rational design of repurposing campaigns and useful resources. One of the innovative aspects of the projects carried out is indeed represented by the integration of different established methods in new protocols and platforms, thus increasing their usability and improving the chances of developing successful repositioning campaigns. The data featured here were the subject of multiple publications in international journals, and the novel proposed platforms were made available to the public.

La tradizionale scoperta di farmaci è un processo lungo e costoso, spesso ostacolato da alti tassi di fallimento. Una valida alternativa è il riposizionamento dei farmaci (drug repurposing), definito come l'identificazione di nuove indicazioni terapeutiche per farmaci già noti o candidati farmaci, prodotti sintetici e naturali. Il riposizionamento dei farmaci permette di ridurre i tempi, i rischi e i costi associati alle tradizionali procedure di scoperta, poiché la maggior parte dei composti ha in molti casi già superato studi di sicurezza e tossicità. Inoltre, l'aumento dei dati biologici, clinici e chimici ha creato nuove opportunità per il riposizionamento dei farmaci. Perciò, l'uso su larga scala di approcci in silico ha dimostrato di essere una strategia efficiente e conveniente. Tuttavia, ad oggi rimane un forte bisogno di protocolli razionali e nuove metodologie per aiutare i ricercatori in questo campo. Sulla base di queste premesse, l'obiettivo del progetto di dottorato è stato focalizzato su due aree principali del riposizionamento dei farmaci in silico: i) l'applicazione di protocolli su misura per specifiche campagne di riposizionamento; e ii) lo sviluppo di nuovi metodi e approcci generali. Durante il corso di dottorato, sono state messe a punto molteplici applicazioni di protocolli integranti diversi approcci computazionali per il riposizionamento di prodotti di origine sia naturale che sintetica. Il data mining da noti database pubblici ha permesso di eseguire valutazioni della similarità 2D e 3D, e di selezionare target per eseguire studi di docking molecolare. Ogni protocollo è stato personalizzato tenendo conto delle caratteristiche delle molecole sotto studio. Infine, i test in vitro su proteine o cellule isolate hanno permesso di convalidare sperimentalmente le previsioni. Parallelamente, il progetto di dottorato è stato incentrato sullo sviluppo di protocolli innovativi in grado di fornire nuove risorse. Per esempio, è stata sviluppata una piattaforma basata sulle tecniche di machine learning (ML) per prevedere il profilo di selettività tra diverse isoforme enzimatiche. Inoltre, è stato realizzato il sito web LigAdvisor, una piattaforma integrata per il repurposing e la polifarmacologia. I progetti implementati hanno fornito risultati molto soddisfacenti. Infatti, nel corso dei tre anni è stato possibile: riposizionare una libreria di composti di origine sintetica, identificando un potente inibitore della Anidrasi Carbonica (hCA) II, e poi progettare suoi derivati con attività duale su hCA e sui Recettori degli Estrogeni (ER); riposizionare prodotti naturali su ERβ; identificare candidati per l'inibizione della proteasi principale (Mpro) di SARS-CoV-2. La piattaforma di screening tramite machine learning ha fornito eccellenti prestazioni predittive, migliori di quelle ottenute con altri approcci tradizionali. Infine, lo sviluppo del sito web LigAdvisor, liberamente accessibile, permette anche ai non esperti del settore di reperire una grande quantità di dati di alta qualità e di eseguire una varietà di ricerche. In conclusione, i risultati riportati in questa tesi dimostrano come l'uso di approcci computazionali, intelligenza artificiale e tecniche di data mining sia realmente utile nella progettazione di campagne di riposizionamento. Uno degli aspetti innovativi dei progetti realizzati è infatti rappresentato dall'integrazione di diversi metodi consolidati in nuovi protocolli e piattaforme, aumentando così la loro usabilità e migliorando le possibilità di sviluppare campagne di riposizionamento di successo. I dati qui presentati sono stati oggetto di molteplici pubblicazioni su riviste internazionali, e le nuove piattaforme proposte sono state rese disponibili al pubblico.

Tecnologie data-driven per il riposizionamento del farmaco: applicazione di protocolli mirati e metodi innovativi / Annachiara Tinivella - : . , 2022 May 27. ((34. ciclo, Anno Accademico 2020/2021.

Tecnologie data-driven per il riposizionamento del farmaco: applicazione di protocolli mirati e metodi innovativi

TINIVELLA, ANNACHIARA
2022-05-27T00:00:00+02:00

Abstract

La tradizionale scoperta di farmaci è un processo lungo e costoso, spesso ostacolato da alti tassi di fallimento. Una valida alternativa è il riposizionamento dei farmaci (drug repurposing), definito come l'identificazione di nuove indicazioni terapeutiche per farmaci già noti o candidati farmaci, prodotti sintetici e naturali. Il riposizionamento dei farmaci permette di ridurre i tempi, i rischi e i costi associati alle tradizionali procedure di scoperta, poiché la maggior parte dei composti ha in molti casi già superato studi di sicurezza e tossicità. Inoltre, l'aumento dei dati biologici, clinici e chimici ha creato nuove opportunità per il riposizionamento dei farmaci. Perciò, l'uso su larga scala di approcci in silico ha dimostrato di essere una strategia efficiente e conveniente. Tuttavia, ad oggi rimane un forte bisogno di protocolli razionali e nuove metodologie per aiutare i ricercatori in questo campo. Sulla base di queste premesse, l'obiettivo del progetto di dottorato è stato focalizzato su due aree principali del riposizionamento dei farmaci in silico: i) l'applicazione di protocolli su misura per specifiche campagne di riposizionamento; e ii) lo sviluppo di nuovi metodi e approcci generali. Durante il corso di dottorato, sono state messe a punto molteplici applicazioni di protocolli integranti diversi approcci computazionali per il riposizionamento di prodotti di origine sia naturale che sintetica. Il data mining da noti database pubblici ha permesso di eseguire valutazioni della similarità 2D e 3D, e di selezionare target per eseguire studi di docking molecolare. Ogni protocollo è stato personalizzato tenendo conto delle caratteristiche delle molecole sotto studio. Infine, i test in vitro su proteine o cellule isolate hanno permesso di convalidare sperimentalmente le previsioni. Parallelamente, il progetto di dottorato è stato incentrato sullo sviluppo di protocolli innovativi in grado di fornire nuove risorse. Per esempio, è stata sviluppata una piattaforma basata sulle tecniche di machine learning (ML) per prevedere il profilo di selettività tra diverse isoforme enzimatiche. Inoltre, è stato realizzato il sito web LigAdvisor, una piattaforma integrata per il repurposing e la polifarmacologia. I progetti implementati hanno fornito risultati molto soddisfacenti. Infatti, nel corso dei tre anni è stato possibile: riposizionare una libreria di composti di origine sintetica, identificando un potente inibitore della Anidrasi Carbonica (hCA) II, e poi progettare suoi derivati con attività duale su hCA e sui Recettori degli Estrogeni (ER); riposizionare prodotti naturali su ERβ; identificare candidati per l'inibizione della proteasi principale (Mpro) di SARS-CoV-2. La piattaforma di screening tramite machine learning ha fornito eccellenti prestazioni predittive, migliori di quelle ottenute con altri approcci tradizionali. Infine, lo sviluppo del sito web LigAdvisor, liberamente accessibile, permette anche ai non esperti del settore di reperire una grande quantità di dati di alta qualità e di eseguire una varietà di ricerche. In conclusione, i risultati riportati in questa tesi dimostrano come l'uso di approcci computazionali, intelligenza artificiale e tecniche di data mining sia realmente utile nella progettazione di campagne di riposizionamento. Uno degli aspetti innovativi dei progetti realizzati è infatti rappresentato dall'integrazione di diversi metodi consolidati in nuovi protocolli e piattaforme, aumentando così la loro usabilità e migliorando le possibilità di sviluppare campagne di riposizionamento di successo. I dati qui presentati sono stati oggetto di molteplici pubblicazioni su riviste internazionali, e le nuove piattaforme proposte sono state rese disponibili al pubblico.
Data-driven technologies for drug repurposing: application of tailored protocols and novel methods
RASTELLI, Giulio
File in questo prodotto:
File Dimensione Formato  
Thesis-PhD_TINIVELLA-ANNACHIARA_accepted.pdf

embargo fino al 26/05/2025

Descrizione: Tesi definitiva TINIVELLA ANNACHIARA
Tipologia: Tesi di dottorato
Dimensione 9.48 MB
Formato Adobe PDF
9.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/1278617
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact