Recent work has demonstrated how data-driven AI methods can leverage consumer protection by supporting the automated analysis of legal documents. However, a shortcoming of data-driven approaches is poor explainability. We posit that in this domain useful explanations of classifier outcomes can be provided by resorting to legal rationales. We thus consider several configurations of memory-augmented neural networks where rationales are given a special role in the modeling of context knowledge. Our results show that rationales not only contribute to improve the classification accuracy, but are also able to offer meaningful, natural language explanations of otherwise opaque classifier outcomes.

Detecting and explaining unfairness in consumer contracts through memory networks / Ruggeri, F.; Lagioia, F.; Lippi, M.; Torroni, P.. - In: ARTIFICIAL INTELLIGENCE AND LAW. - ISSN 0924-8463. - 30:1(2022), pp. 59-92. [10.1007/s10506-021-09288-2]

Detecting and explaining unfairness in consumer contracts through memory networks

Ruggeri F.;Lippi M.;
2022

Abstract

Recent work has demonstrated how data-driven AI methods can leverage consumer protection by supporting the automated analysis of legal documents. However, a shortcoming of data-driven approaches is poor explainability. We posit that in this domain useful explanations of classifier outcomes can be provided by resorting to legal rationales. We thus consider several configurations of memory-augmented neural networks where rationales are given a special role in the modeling of context knowledge. Our results show that rationales not only contribute to improve the classification accuracy, but are also able to offer meaningful, natural language explanations of otherwise opaque classifier outcomes.
2022
30
1
59
92
Detecting and explaining unfairness in consumer contracts through memory networks / Ruggeri, F.; Lagioia, F.; Lippi, M.; Torroni, P.. - In: ARTIFICIAL INTELLIGENCE AND LAW. - ISSN 0924-8463. - 30:1(2022), pp. 59-92. [10.1007/s10506-021-09288-2]
Ruggeri, F.; Lagioia, F.; Lippi, M.; Torroni, P.
File in questo prodotto:
File Dimensione Formato  
AILaw2021.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 1.34 MB
Formato Adobe PDF
1.34 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1277728
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 12
social impact