Thermal barrier coatings (TBCs) are refractory-oxide ceramic coatings applied on metallic components in the hot section of industrial gas turbines (IGT), where gas temperatures are higher than the melting point of the metallic substrates. TBCs provide thermal insulation the underlying metal parts: acting in synergy with an internal air-cooling system, TBCs reduce the temperatures of the metal down to tolerable levels. The “state of the art” for TBCs is 7-8 wt.% (≈3.5 mol.%) Y2O3-stabilized zirconia (YSZ) with high melting point (2690 °C), phase stability up to 1200 °C, and low thermal conductivity. A typical coating system comprises a bi-layer architecture, where a porous, thermally insulating YSZ layer is deposited by plasma spraying onto a metallic bond coat (MCrAlY alloys, M = Ni, Co or NiCo) which protects the superalloy substrate against oxidation and improves the top layer adhesion. During exposure to high temperatures, between these two layers, a further layer called thermally grown oxide (TGO) made of α-Al2O3 is formed by oxidation of the MCrAlY bond coat. Failure of TBCs during service can be due either to the cyclic thermal stresses induced by starting and stopping the turbine, which cause the nucleation and growth of delamination cracks, or by chemical degradation. Specifically, when gas turbines operate in dusty environments, they can ingest silicate powders, which then form molten deposits based on CaO-MgO-Al2O3-SiO2 (CMAS) mixtures on the surface of hot-section components. The present work is especially focused on studying TBC systems with improved chemical resistance to molten CMAS deposits. The first part of this Thesis studies the infiltration behaviour and reaction mechanism between the CMAS deposit and 8YSZ coatings with various kinds of microstructures: porous, layers from atmospheric plasma spraying (APS) of standard and high-purity YSZ feedstock; a dense-vertically cracked (DVC) APS layer; and a columnar YSZ coating obtained by suspension plasma spraying (SPS). It was found that CMAS attacks YSZ by dissolving its grain boundaries, and a low-purity material accelerates the dissolution by molten CMAS. It was also found that the DVC microstructure is effective for reducing the infiltration of molten CMAS. In the second part of this work, having established the DVC microstructure as the most promising for improved resistance to CMAS corrosion, tests were carried out on three novel coating materials: Gd/Yb/Y co-doped ZrO2, Gd2ZrO7 and ZrO2-55 wt.%Y2O3. All were manufactured as DVC layers on the same type of MCrAlY bond coat. Porous and DVC 8YSZ were employed as terms of comparison. In addition, six ceramic bilayers systems were also tested, where 8YSZ with either porous or DVC microstructure was employed as a bottom layer under a DVC top layer of either Gd/Yb/Y co-doped ZrO2, Gd2ZrO7 or ZrO2-55 wt.%Y2O3. These systems were subjected to CMAS corrosion tests and thermal cycling fatigue (TCF) tests. Multilayered coatings showed longer thermal cycling fatigue life compared to monolayer coatings. On the other hand, CMAS tests showed that the novel materials do exhibit improved corrosion resistance. DVC Gd2ZrO7 layers, in particular, exhibited excellent CMAS corrosion resistance because the formation of a solid Gd-apatite layer at the interface with molten CMAS blocked further reaction and slowed down CMAS penetration. The combination of a Gd2ZrO7 top layer with a porous 8YSZ bottom layer shows enhanced resistance to thermal cycling fatigue. Although the bi-layer system does not attain the same TCF resistance of pure YSZ, the combination between reasonable TCF life and excellent CMAS resistance makes it a good choice for turbines operating in demanding environmental conditions.

Le barriere termiche (TBC) sono rivestimenti ceramici applicati su componenti metallici nelle sezioni calde delle turbine a gas industriali (IGT), dove le temperature dei gas sono superiori al punto di fusione dei substrati metallici. Le TBC forniscono isolamento termico alle parti metalliche sottostanti: agendo in sinergia con un sistema interno di raffreddamento ad aria, le TBC riducono le temperature superficiali del metallo. Lo “stato dell’arte” delle TBC è la zirconia stabilizzata con il 7-8% in peso di Y2O3 (YSZ) che ha un alto punto di fusione (2690°C), una stabilità di fase sopra i 1200°C, e bassa conducibilità termica. Un tipico sistema di rivestimento comprende un'architettura a doppio strato, in cui uno strato YSZ poroso e termoisolante è depositato mediante spruzzatura al plasma su un bondcoat metallico (leghe MCrAlY, M = Ni, Co o NiCo) che protegge il substrato di superlega dall'ossidazione e migliora l'adesione dello strato superiore. Durante l'esposizione ad alte temperature, tra questi due strati, si forma per ossidazione del bondcoat uno strato chiamato thermally grown oxide (TGO) costituito da α-Al2O3. Il cedimento delle TBC può essere dovuto sia a sollecitazioni termiche cicliche indotte dall’accensione e spegnimento delle turbine, che provocano la nucleazione e la crescita di cricche, sia alla degradazione chimica. Quando le turbine a gas operano in ambienti polverosi, possono ingerire polveri di silicati, che poi formano depositi fusi a base di miscele di CaO-MgO-Al2O3-SiO2 (CMAS) sulla superficie dei componenti delle parti calde. Il presente lavoro è incentrato sullo studio di sistemi TBC con una maggiore resistenza chimica ai depositi di CMAS. La prima parte di questa tesi studia l’infiltrazione e il meccanismo di reazione tra la CMAS e i rivestimenti 8YSZ con diverse microstrutture: porose ottenute tramite atmospheric plasma spraying (APS) utilizzando materie prime a standard e ad elevata purezza; dense-vertically cracked (DVC) APS; microstrutture colonnari ottenute tramite suspension plasma spraying (SPS). È stato riscontrato che la CMAS attacca la YSZ dissolvendo i suoi bordi grano e che l’utilizzo di un materiale a bassa purezza accelera la dissoluzione. Nella seconda parte di questo lavoro, dopo aver identificato la microstruttura DVC come la più promettente in termini di resistenza a corrosione da CMAS, sono stati effettuati test su tre nuovi rivestimenti: ZrO2 drogata con Gd/Yb/Y, Gd2ZrO7 e ZrO2 con 55% in peso di Y2O3. Tutti sono stati prodotti con una microstruttura DVC e depositati sullo stesso tipo di bondcoat. 8YSZ porosi e DVC sono stati utilizzati come termine di confronto. Inoltre, sono stati testati sei sistemi a doppio strato, in cui la 8YSZ con microstruttura porosa o DVC è stata impiegata come strato inferiore ad uno strato DVC di Gd/Yb/Y, Gd2ZrO7 e ZrO2 con 55% in peso di Y2O3. Questi sistemi sono stati sottoposti a test di corrosione CMAS e test di ciclaggio termico (TCF). I rivestimenti multistrato hanno mostrato una durata a TCF più lunga rispetto ai rivestimenti monostrato. D'altra parte, i test CMAS hanno mostrato che i nuovi materiali hanno una migliore resistenza alla corrosione. Il DVC Gd2ZrO7, ha mostrato un'eccellente resistenza alla corrosione CMAS dovuta alla formazione di uno strato solido di Gd-apatite all'interfaccia con CMAS fusa che blocca l'ulteriore reazione e rallentata la penetrazione di CMAS. La combinazione di uno strato superiore di Gd2ZrO7 con uno strato inferiore poroso 8YSZ mostra una maggiore resistenza a TCF. Sebbene il sistema a doppio strato non raggiunga la stessa resistenza TCF del puro YSZ, la combinazione tra una ragionevole durata a TCF e un'eccellente resistenza CMAS lo rende una buona scelta per le turbine che operano in condizioni ambientali ostili.

Resistenza a corrosione da CMAS di barriere termiche (TBCs): influenza della microstruttura, materiali e architettura del rivestimento / Stefania Morelli , 2022 May 16. 34. ciclo, Anno Accademico 2020/2021.

Resistenza a corrosione da CMAS di barriere termiche (TBCs): influenza della microstruttura, materiali e architettura del rivestimento

MORELLI, STEFANIA
2022

Abstract

Thermal barrier coatings (TBCs) are refractory-oxide ceramic coatings applied on metallic components in the hot section of industrial gas turbines (IGT), where gas temperatures are higher than the melting point of the metallic substrates. TBCs provide thermal insulation the underlying metal parts: acting in synergy with an internal air-cooling system, TBCs reduce the temperatures of the metal down to tolerable levels. The “state of the art” for TBCs is 7-8 wt.% (≈3.5 mol.%) Y2O3-stabilized zirconia (YSZ) with high melting point (2690 °C), phase stability up to 1200 °C, and low thermal conductivity. A typical coating system comprises a bi-layer architecture, where a porous, thermally insulating YSZ layer is deposited by plasma spraying onto a metallic bond coat (MCrAlY alloys, M = Ni, Co or NiCo) which protects the superalloy substrate against oxidation and improves the top layer adhesion. During exposure to high temperatures, between these two layers, a further layer called thermally grown oxide (TGO) made of α-Al2O3 is formed by oxidation of the MCrAlY bond coat. Failure of TBCs during service can be due either to the cyclic thermal stresses induced by starting and stopping the turbine, which cause the nucleation and growth of delamination cracks, or by chemical degradation. Specifically, when gas turbines operate in dusty environments, they can ingest silicate powders, which then form molten deposits based on CaO-MgO-Al2O3-SiO2 (CMAS) mixtures on the surface of hot-section components. The present work is especially focused on studying TBC systems with improved chemical resistance to molten CMAS deposits. The first part of this Thesis studies the infiltration behaviour and reaction mechanism between the CMAS deposit and 8YSZ coatings with various kinds of microstructures: porous, layers from atmospheric plasma spraying (APS) of standard and high-purity YSZ feedstock; a dense-vertically cracked (DVC) APS layer; and a columnar YSZ coating obtained by suspension plasma spraying (SPS). It was found that CMAS attacks YSZ by dissolving its grain boundaries, and a low-purity material accelerates the dissolution by molten CMAS. It was also found that the DVC microstructure is effective for reducing the infiltration of molten CMAS. In the second part of this work, having established the DVC microstructure as the most promising for improved resistance to CMAS corrosion, tests were carried out on three novel coating materials: Gd/Yb/Y co-doped ZrO2, Gd2ZrO7 and ZrO2-55 wt.%Y2O3. All were manufactured as DVC layers on the same type of MCrAlY bond coat. Porous and DVC 8YSZ were employed as terms of comparison. In addition, six ceramic bilayers systems were also tested, where 8YSZ with either porous or DVC microstructure was employed as a bottom layer under a DVC top layer of either Gd/Yb/Y co-doped ZrO2, Gd2ZrO7 or ZrO2-55 wt.%Y2O3. These systems were subjected to CMAS corrosion tests and thermal cycling fatigue (TCF) tests. Multilayered coatings showed longer thermal cycling fatigue life compared to monolayer coatings. On the other hand, CMAS tests showed that the novel materials do exhibit improved corrosion resistance. DVC Gd2ZrO7 layers, in particular, exhibited excellent CMAS corrosion resistance because the formation of a solid Gd-apatite layer at the interface with molten CMAS blocked further reaction and slowed down CMAS penetration. The combination of a Gd2ZrO7 top layer with a porous 8YSZ bottom layer shows enhanced resistance to thermal cycling fatigue. Although the bi-layer system does not attain the same TCF resistance of pure YSZ, the combination between reasonable TCF life and excellent CMAS resistance makes it a good choice for turbines operating in demanding environmental conditions.
CMAS corrosion resistance of thermal barrier coatings (TBCs): influence of the coating microstructure, materials and architecture
16-mag-2022
LUSVARGHI, Luca
BOLELLI, Giovanni
File in questo prodotto:
File Dimensione Formato  
PhD Thesis_ Stefania Morelli.pdf

embargo fino al 15/05/2025

Descrizione: Tesi definitiva Stefania Morelli
Tipologia: Tesi di dottorato
Dimensione 14.58 MB
Formato Adobe PDF
14.58 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1277126
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact