r-fat polynomials are a natural generalization of scattered polynomials. They define linear sets of the projective line PG(1,qn) of rank n with r points of weight larger than one. Using techniques on algebraic curves and function fields, we obtain numerical bounds for r and the non-existence of exceptional r-fat polynomials with r>0. We completely determine the possible values of r when considering linearized polynomials over Fqjavax.xml.bind.JAXBElement@3a225500 and we also provide one family of 1-fat polynomials in PG(1,q5). Furthermore, we investigate LP-polynomials (i.e. polynomials of type f(x)=x+δxqjavax.xml.bind.JAXBElement@11206662∈Fqjavax.xml.bind.JAXBElement@16c0ec2a[x], gcd⁡(n,s)=1), determining the spectrum of values r for which such polynomials are r-fat.

r-fat linearized polynomials over finite fields / Bartoli, D.; Micheli, G.; Zini, G.; Zullo, F.. - In: JOURNAL OF COMBINATORIAL THEORY. SERIES A. - ISSN 0097-3165. - 189:(2022), pp. 1-30. [10.1016/j.jcta.2022.105609]

r-fat linearized polynomials over finite fields

Zini G.;
2022

Abstract

r-fat polynomials are a natural generalization of scattered polynomials. They define linear sets of the projective line PG(1,qn) of rank n with r points of weight larger than one. Using techniques on algebraic curves and function fields, we obtain numerical bounds for r and the non-existence of exceptional r-fat polynomials with r>0. We completely determine the possible values of r when considering linearized polynomials over Fqjavax.xml.bind.JAXBElement@3a225500 and we also provide one family of 1-fat polynomials in PG(1,q5). Furthermore, we investigate LP-polynomials (i.e. polynomials of type f(x)=x+δxqjavax.xml.bind.JAXBElement@11206662∈Fqjavax.xml.bind.JAXBElement@16c0ec2a[x], gcd⁡(n,s)=1), determining the spectrum of values r for which such polynomials are r-fat.
2022
189
1
30
r-fat linearized polynomials over finite fields / Bartoli, D.; Micheli, G.; Zini, G.; Zullo, F.. - In: JOURNAL OF COMBINATORIAL THEORY. SERIES A. - ISSN 0097-3165. - 189:(2022), pp. 1-30. [10.1016/j.jcta.2022.105609]
Bartoli, D.; Micheli, G.; Zini, G.; Zullo, F.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0097316522000176-main.pdf

Accesso riservato

Descrizione: Articolo principale
Tipologia: Versione pubblicata dall'editore
Dimensione 568.54 kB
Formato Adobe PDF
568.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1274394
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 5
social impact