The high costs in time and efforts associated with the use of mammals in biomedical research are creating a pressing demand for alternative models that are cheaper and simpler, but still effective. The aim of my thesis was the characterization of the pond snail Lymnaea stagnalis as a model for Translational Neuroscience. Different bioinformatics, molecular, and behavioural studies have been performed to show the validity and versatility of this model to study phenomena so far demonstrated only in mammals. In particular, it has been shown that (1) L. stagnalis can be used to elucidate the conserved dialogue between the immune and nervous systems and to study the effects of inflammation on cognitive functions. An immune challenge (i.e., injection of lipopolysaccharide – LPS) affected the transcriptional levels of the enzymes of the kynurenine pathway in L. stagnalis’ central nervous ganglia. This conserved pathway in vertebrates and invertebrates catabolizes the aminoacid tryptophan into several neuroactive metabolites which can exert both neuroprotective and neurotoxic effects. The same immune challenge was able to alter snails’ adaptive behaviours and to obstruct their ability to form or show long-term memory (LTM), as observed for more complex organisms. These behavioural effects were prevented by exposing L. stagnalis to an anti-inflammatory compound, like aspirin, before the LPS injection, suggesting the involvement of immune-related molecules in mediating LPS-induced sequelae. The results of these studies gave important translational contributions for elucidating the effects of inflammation on the central nervous system. (2) L. stagnalis is capable of the Garcia effect, a higher form of learning, consisting of a conditioned aversion to an appetitive food stimulus consumed hours before the exposure to an aversive, nausea-inducing stimulus. As previously demonstrated in rodents and humans, a single paired presentation of these stimuli was sufficient to create a long-lasting and taste-specific gustatory aversion. This study allowed to elucidate the causal underpinnings of the Garcia effect in higher animals. (3) L. stagnalis can be used to predict the effects of the current global warming on animal resilience, adaptive behaviours, and cognitive functions. Daily exposure to a thermal shock increased the thermal sensitivity of laboratory-reared snails, which have been maintained under constant laboratory temperatures for generations. However, this ‘habitat-related challenge’ did not appear to be a stressor in freshly collected snails, that had experienced severe thermal fluctuations in their natural environment, nor in their progeny born and raised in lab conditions. These results allowed a better understanding of the role of genetic changes and physiological plasticity on thermotolerance. (4) L. stagnalis is a versatile model to examine the effects of bioactive natural compounds on learning and memory. Exposure to the flavonoid quercetin upregulated the serotoninergic pathway and CREB1 (cAMP response element-binding protein 1), a key regulator of synaptic plasticity in several in vivo models, in L. stagnalis’ central ganglia. This molecular effect was accompanied by an enhancement of LTM acquisition, consolidation, recall, and reconsolidation. Although animal models can never summarize the full phenotype of human brains, findings presented in my thesis illustrated that, when moved from pond to bench, L. stagnalis represents a valid model to open new frontiers in Translational Neuroscience. The ultimate goal of this project is to provide an additional tool to promote and sustain the rational and move research from bench to bedside, ‘translating’ data from snails to mammals, and maybe to humans.

Gli alti costi in termini di gestione, tempo e lavoro legati all'uso dei mammiferi nella ricerca biomedica hanno reso sempre più urgente la necessità di individuare modelli alternativi più economici e semplici ma altrettanto efficaci. Lo scopo della mia tesi è stata la caratterizzazione della chiocciola di stagno Lymnaea stagnalis come modello per le Neuroscienze Traslazionali. Gli studi bioinformatici, molecolari e comportamentali condotti hanno dimostrato la validità e la versatilità di questo modello e hanno permesso di esaminare fenomeni finora osservati solo nei mammiferi. In particolare, è emerso che: (1) L. stagnalis consente di approfondire il dialogo tra il sistema nervoso e immunitario, inclusi gli effetti dell’infiammazione sulle funzioni cognitive. Il trattamento con uno stimolo infiammatorio (lipopolisaccaride - LPS) è stato in grado di modulare l’espressione degli enzimi della pathway delle chinurenine nel sistema nervoso centrale di L. stagnalis. Questa pathway è altamente conservata tra vertebrati e invertebrati e metabolizza il triptofano in diversi cataboliti neuroattivi, i quali possono essere sia neurotossici che neuroprotettivi. Lo stesso stimolo è stato in grado di alterare il comportamento e le performance cognitive delle chiocciole, come osservato in organismi più complessi, uomo incluso. Questi effetti possono essere eliminati trattando preventivamente gli animali con un composto antinfiammatorio come l’aspirina. (2) L. stagnalis è in grado di formare il Garcia effect, una forma di apprendimento complesso che consiste in un’avversione condizionata a un sapore nuovo a seguito della sua associazione a uno stimolo avverso che induce un malessere viscerale, incontrato fino a 48h ore dopo. Come precedentemente dimostrato nel modello di roditore e nell’uomo, è stata sufficiente una singola presentazione dei due stimoli per generare una duratura e specifica avversione per questo sapore. L. stagnalis rappresenta quindi un modello semplificato per lo studio dei meccanismi alla base del Garcia effect negli organismi più complessi. (3) L. stagnalis può essere utilizzata per studiare gli effetti del riscaldamento globale sulla resilienza, i comportamenti adattativi e le funzioni cognitive degli organismi. L'esposizione giornaliera a uno shock termico ha aumentato la sensibilità alle temperature delle chiocciole di laboratorio (mantenute a temperature costanti per generazioni), ma non è stato un fattore di stress per le chiocciole appena raccolte nei loro habitat naturali (dove sono state esposte a considerevoli escursioni termiche), né per la loro progenie nata e allevata in laboratorio. Questi risultati hanno suggerito un duplice ruolo della genetica e della plasticità fisiologica nella termo-tolleranza. (4) L. stagnalis permette di studiare gli effetti di composti naturali bioattivi su apprendimento e memoria. L'esposizione acuta al flavonoide quercetina si è dimostrata in grado di migliorare la formazione della memoria a lungo termine, mentre a livello molecolare ha indotto un’up-regolazione della via serotoninergica e di CREB1 (cAMP response element-binding protein 1), i quali svolgono un ruolo chiave e altamente conservato nei processi di plasticità sinaptica. Anche se i modelli animali non potranno mai riassumere l'intero fenotipo dei cervelli umani, i risultati presentati nella mia tesi hanno illustrato che, se spostata dallo stagno al banco di laboratorio, L. stagnalis rappresenta un modello valido per aprire nuove frontiere nelle Neuroscienze Traslazionali. L'obiettivo finale di questo progetto è quello di fornire un ulteriore strumento per promuovere lo spostamento della ricerca dal banco di laboratorio al letto dei pazienti, 'traducendo' i dati ottenuti nelle chiocciole ai mammiferi.

Lymnaea stagnalis come modello per la ricerca traslazionale nell'ambito delle Neuroscienze: dallo stagno al bancone di laboratorio / Veronica Rivi , 2022 Mar 30. 34. ciclo, Anno Accademico 2020/2021.

Lymnaea stagnalis come modello per la ricerca traslazionale nell'ambito delle Neuroscienze: dallo stagno al bancone di laboratorio

RIVI, VERONICA
2022

Abstract

The high costs in time and efforts associated with the use of mammals in biomedical research are creating a pressing demand for alternative models that are cheaper and simpler, but still effective. The aim of my thesis was the characterization of the pond snail Lymnaea stagnalis as a model for Translational Neuroscience. Different bioinformatics, molecular, and behavioural studies have been performed to show the validity and versatility of this model to study phenomena so far demonstrated only in mammals. In particular, it has been shown that (1) L. stagnalis can be used to elucidate the conserved dialogue between the immune and nervous systems and to study the effects of inflammation on cognitive functions. An immune challenge (i.e., injection of lipopolysaccharide – LPS) affected the transcriptional levels of the enzymes of the kynurenine pathway in L. stagnalis’ central nervous ganglia. This conserved pathway in vertebrates and invertebrates catabolizes the aminoacid tryptophan into several neuroactive metabolites which can exert both neuroprotective and neurotoxic effects. The same immune challenge was able to alter snails’ adaptive behaviours and to obstruct their ability to form or show long-term memory (LTM), as observed for more complex organisms. These behavioural effects were prevented by exposing L. stagnalis to an anti-inflammatory compound, like aspirin, before the LPS injection, suggesting the involvement of immune-related molecules in mediating LPS-induced sequelae. The results of these studies gave important translational contributions for elucidating the effects of inflammation on the central nervous system. (2) L. stagnalis is capable of the Garcia effect, a higher form of learning, consisting of a conditioned aversion to an appetitive food stimulus consumed hours before the exposure to an aversive, nausea-inducing stimulus. As previously demonstrated in rodents and humans, a single paired presentation of these stimuli was sufficient to create a long-lasting and taste-specific gustatory aversion. This study allowed to elucidate the causal underpinnings of the Garcia effect in higher animals. (3) L. stagnalis can be used to predict the effects of the current global warming on animal resilience, adaptive behaviours, and cognitive functions. Daily exposure to a thermal shock increased the thermal sensitivity of laboratory-reared snails, which have been maintained under constant laboratory temperatures for generations. However, this ‘habitat-related challenge’ did not appear to be a stressor in freshly collected snails, that had experienced severe thermal fluctuations in their natural environment, nor in their progeny born and raised in lab conditions. These results allowed a better understanding of the role of genetic changes and physiological plasticity on thermotolerance. (4) L. stagnalis is a versatile model to examine the effects of bioactive natural compounds on learning and memory. Exposure to the flavonoid quercetin upregulated the serotoninergic pathway and CREB1 (cAMP response element-binding protein 1), a key regulator of synaptic plasticity in several in vivo models, in L. stagnalis’ central ganglia. This molecular effect was accompanied by an enhancement of LTM acquisition, consolidation, recall, and reconsolidation. Although animal models can never summarize the full phenotype of human brains, findings presented in my thesis illustrated that, when moved from pond to bench, L. stagnalis represents a valid model to open new frontiers in Translational Neuroscience. The ultimate goal of this project is to provide an additional tool to promote and sustain the rational and move research from bench to bedside, ‘translating’ data from snails to mammals, and maybe to humans.
Lymnaea stagnalis as model for translational neuroscience research: from pond to bench
30-mar-2022
TASCEDDA, Fabio
File in questo prodotto:
File Dimensione Formato  
Rivi V.pdf

embargo fino al 29/03/2025

Descrizione: Tesi definitiva. Rivi Veronica
Tipologia: Tesi di dottorato
Dimensione 6.27 MB
Formato Adobe PDF
6.27 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1273449
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact