The degeneration of dopaminergic (DA) neurons of the ventral mesencephalon is considered one of the hallmarks in Parkinson’s disease (PD) and Parkinsonism. Their susceptibility to damage and their adaptability and plasticity were initially studied in animal models in order to understand the cellular and molecular mechanisms and the action of pharmacological therapeutics. The recent introduction of human inducible pluripotent stem cells (iPSCs) technology and the development of protocols for their differentiation into neurons with a DA phenotype has permitted the direct evaluation of cellular mechanisms of PD and Parkinsonism, the mechanism of action of anti-parkinsonian drugs and the exploratory applications of various aspects of cell therapy. The aim of this thesis was the generation and phenotypic characterization of human DA neurons amenable to be used as a tool for the development of a variety of therapeutic devices based on cell therapy, in particular implantable whole-organic electronic devices. These devices were designed to be implanted in animal models of PD for a loco-regional therapy driven by electrical and chemical stimuli to support the engraftment of DA neuron precursors, maximizing their differentiation and function. In order to achieve high quality and reproducible human DA neuron precursors that are able to differentiate and mature into functional DA neurons that respond to electrical and chemical stimuli, therefore amenable to the above described use, this work was organized in four main subprojects. The first subproject was dedicated to the optimization of the methods of differentiation of human iPSCs into mesencephalic DA neuron precursors using a previously published protocol (Fedele et al. 2017). These DA neuron precursors can be expanded for several passages and stored in liquid nitrogen for any future use. The second subproject was dedicated to the differentiation of mesencephalic DA precursors into mature DA neurons that were characterized by immunofluorescence, quantitative PCR, HPLC and electrophysiological analyses. The DA phenotype of the neurons was investigated by testing their response to two dopaminergic agonists (i.e., pramipexole and piribedil) currently used for the treatment of PD. Recent data have demonstrated a neurotrophic effect produced by an anti-parkinsonian DA D2/D3 receptor (D2R/D3R) agonist, ropinirole (Collo et al. 2018). Based on these findings, the cellular and molecular effects of pramipexole and piribedil on human DA neurons were evaluated by studying morphological changes related to structural plasticity and the activation of intracellular pathways. The neuroprotective and neuroregenerative properties of these two pharmacological agents were also studied. The third subproject was dedicated to the study of the effects of the electrical stimulation on the structural plasticity of human DA neurons. Several reports have shown that electrical stimulation can promote neuronal differentiation and neurite growth of various neuronal cell types in vitro, including PC12 (Jing et al. 2019) and human neural stem cells (Stewart et al. 2015). The fourth subproject was dedicated to the generation of human iPSCs from peripheral blood mononuclear cells (PBMCs) donated from a novel set of healthy controls and patients affected by a Parkinsonism, i.e., the multiple system atrophy (MSA). The iPSC clones obtained from the control and the patient underwent a phenotypic characterization to examine the presence of pluripotency markers by immunofluorescence and quantitative PCR analysis, karyotype analysis, pluripotency and trilineage differentiation potential. The iPSCs were subsequently differentiated into mesencephalic DA neurons and assessed for their pharmacological response to dopaminergic agonists.
La degenerazione dei neuroni dopaminergici (DA) del mesencefalo ventrale è considerata uno dei segni distintivi della malattia di Parkinson (PD) e del Parkinsonismo. La loro suscettibilità al danno e la loro adattabilità e plasticità sono state inizialmente studiate in modelli animali per comprendere i meccanismi cellulari e molecolari e l'azione delle terapie farmacologiche. La recente introduzione della tecnologia delle cellule staminali pluripotenti indotte umane (iPSCs) e lo sviluppo di protocolli per la loro differenziazione in neuroni con un fenotipo DA ha permesso la valutazione diretta dei meccanismi cellulari del PD e del Parkinsonismo, il meccanismo d'azione dei farmaci antiparkinsoniani e le applicazioni esplorative di vari aspetti della terapia cellulare. Lo scopo di questa tesi è la generazione e la caratterizzazione fenotipica di neuroni DA umani utilizzabili come strumento per lo sviluppo di una varietà di dispositivi terapeutici basati sulla terapia cellulare, in particolare dispositivi elettronici impiantabili interamente organici. Questi dispositivi sono stati progettati per essere impiantati in modelli animali di PD per una terapia loco-regionale guidata da stimoli elettrici e chimici per supportare l'attecchimento dei precursori dei neuroni DA, massimizzando la loro differenziazione e funzione. Al fine di ottenere precursori di neuroni DA umani di alta qualità e riproducibili che siano in grado di differenziarsi e maturare in neuroni DA funzionali che rispondono a stimoli elettrici e chimici, questo lavoro è stato organizzato in quattro sottoprogetti principali. Il primo sottoprogetto è stato dedicato all'ottimizzazione dei metodi di differenziazione delle iPSCs umane in precursori dei neuroni DA mesencefalici utilizzando un protocollo precedentemente pubblicato (Fedele et al. 2017). Questi precursori dei neuroni DA possono essere espansi per diversi passaggi e conservati in azoto liquido per qualsiasi uso futuro. Il secondo sottoprogetto è stato dedicato alla differenziazione dei precursori DA mesencefalici in neuroni DA maturi che sono stati caratterizzati mediante immunofluorescenza, PCR quantitativa, HPLC ed analisi elettrofisiologiche. Il fenotipo DA dei neuroni è stato studiato testando la loro risposta a due agonisti dopaminergici (pramipexolo e piribedil) attualmente utilizzati per il trattamento del PD. Dati recenti hanno dimostrato un effetto neurotrofico prodotto da un agonista antiparkinsoniano del recettore DA D2/D3, il ropinirolo (Collo et al. 2018). Sulla base di questi risultati, sono stati valutati gli effetti cellulari e molecolari di pramipexolo e piribedil sui neuroni DA umani studiando i cambiamenti morfologici correlati alla plasticità strutturale e l'attivazione delle vie intracellulari. Sono state studiate anche le proprietà neuroprotettive e neurorigenerative di questi due agenti farmacologici. Il terzo sottoprogetto è stato dedicato allo studio degli effetti della stimolazione elettrica sulla plasticità strutturale dei neuroni DA umani. Diversi lavori hanno dimostrato che la stimolazione elettrica può promuovere la differenziazione neuronale e la crescita dei neuriti di vari tipi di cellule neuronali in vitro, tra cui PC12 e cellule staminali neurali umane. Il quarto sottoprogetto è stato dedicato alla generazione di iPSCs umane da cellule mononucleate del sangue periferico (PBMCs) donate da nuovi controlli sani e pazienti affetti da un Parkinsonismo, l’atrofia multisistemica (MSA). I cloni di iPSCs ottenuti dal controllo e dal paziente sono stati sottoposti a caratterizzazione fenotipica per esaminare la presenza di marcatori di pluripotenza mediante immunofluorescenza, PCR quantitativa, analisi del cariotipo, pluripotenza e capacità di differenziazione nei tre foglietti embrionali. Le iPSCs sono state successivamente differenziate in neuroni DA mesencefalici e valutate per la loro risposta farmacologica agli agonisti dopaminergici.
Generazione e caratterizzazione di neuroni dopaminergici mesencefalici umani derivati da cellule staminali pluripotenti indotte da utilizzarsi come componente di dispositivi terapeutici per parkinsonismi / Laura Cavalleri , 2022 Mar 30. 34. ciclo, Anno Accademico 2020/2021.
Generazione e caratterizzazione di neuroni dopaminergici mesencefalici umani derivati da cellule staminali pluripotenti indotte da utilizzarsi come componente di dispositivi terapeutici per parkinsonismi
CAVALLERI, LAURA
2022
Abstract
The degeneration of dopaminergic (DA) neurons of the ventral mesencephalon is considered one of the hallmarks in Parkinson’s disease (PD) and Parkinsonism. Their susceptibility to damage and their adaptability and plasticity were initially studied in animal models in order to understand the cellular and molecular mechanisms and the action of pharmacological therapeutics. The recent introduction of human inducible pluripotent stem cells (iPSCs) technology and the development of protocols for their differentiation into neurons with a DA phenotype has permitted the direct evaluation of cellular mechanisms of PD and Parkinsonism, the mechanism of action of anti-parkinsonian drugs and the exploratory applications of various aspects of cell therapy. The aim of this thesis was the generation and phenotypic characterization of human DA neurons amenable to be used as a tool for the development of a variety of therapeutic devices based on cell therapy, in particular implantable whole-organic electronic devices. These devices were designed to be implanted in animal models of PD for a loco-regional therapy driven by electrical and chemical stimuli to support the engraftment of DA neuron precursors, maximizing their differentiation and function. In order to achieve high quality and reproducible human DA neuron precursors that are able to differentiate and mature into functional DA neurons that respond to electrical and chemical stimuli, therefore amenable to the above described use, this work was organized in four main subprojects. The first subproject was dedicated to the optimization of the methods of differentiation of human iPSCs into mesencephalic DA neuron precursors using a previously published protocol (Fedele et al. 2017). These DA neuron precursors can be expanded for several passages and stored in liquid nitrogen for any future use. The second subproject was dedicated to the differentiation of mesencephalic DA precursors into mature DA neurons that were characterized by immunofluorescence, quantitative PCR, HPLC and electrophysiological analyses. The DA phenotype of the neurons was investigated by testing their response to two dopaminergic agonists (i.e., pramipexole and piribedil) currently used for the treatment of PD. Recent data have demonstrated a neurotrophic effect produced by an anti-parkinsonian DA D2/D3 receptor (D2R/D3R) agonist, ropinirole (Collo et al. 2018). Based on these findings, the cellular and molecular effects of pramipexole and piribedil on human DA neurons were evaluated by studying morphological changes related to structural plasticity and the activation of intracellular pathways. The neuroprotective and neuroregenerative properties of these two pharmacological agents were also studied. The third subproject was dedicated to the study of the effects of the electrical stimulation on the structural plasticity of human DA neurons. Several reports have shown that electrical stimulation can promote neuronal differentiation and neurite growth of various neuronal cell types in vitro, including PC12 (Jing et al. 2019) and human neural stem cells (Stewart et al. 2015). The fourth subproject was dedicated to the generation of human iPSCs from peripheral blood mononuclear cells (PBMCs) donated from a novel set of healthy controls and patients affected by a Parkinsonism, i.e., the multiple system atrophy (MSA). The iPSC clones obtained from the control and the patient underwent a phenotypic characterization to examine the presence of pluripotency markers by immunofluorescence and quantitative PCR analysis, karyotype analysis, pluripotency and trilineage differentiation potential. The iPSCs were subsequently differentiated into mesencephalic DA neurons and assessed for their pharmacological response to dopaminergic agonists.File | Dimensione | Formato | |
---|---|---|---|
PhD thesis Cavalleri Laura.pdf
embargo fino al 29/03/2025
Descrizione: Tesi definitiva Cavalleri Laura
Tipologia:
Tesi di dottorato
Dimensione
5.18 MB
Formato
Adobe PDF
|
5.18 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris