We prove Lipschitz continuity results for solutions to a class of obstacle problems under standard growth conditions of p-type, p b 2. The main novelty is the use of a linearization technique going back to [28] in order to interpret our constrained minimizer as a solution to a nonlinear elliptic equation, with a bounded right hand side. This lead us to start a Moser iteration scheme which provides the Ll bound for the gradient. The application of a recent higher di¤erentiability result [24] allows us to simplify the procedure of the identification of the Radon measure in the linearization technique employed in [32]. To our knowdledge, this is the first result for nonautomonous functionals with standard growth conditions in the direction of the Lipschitz regularity.

Lipschitz continuity results for a class of obstacle problems / Benassi, C.; Caselli, M.. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1120-6330. - 31:1(2020), pp. 191-210. [10.4171/RLM/885]

Lipschitz continuity results for a class of obstacle problems

Benassi C.;
2020

Abstract

We prove Lipschitz continuity results for solutions to a class of obstacle problems under standard growth conditions of p-type, p b 2. The main novelty is the use of a linearization technique going back to [28] in order to interpret our constrained minimizer as a solution to a nonlinear elliptic equation, with a bounded right hand side. This lead us to start a Moser iteration scheme which provides the Ll bound for the gradient. The application of a recent higher di¤erentiability result [24] allows us to simplify the procedure of the identification of the Radon measure in the linearization technique employed in [32]. To our knowdledge, this is the first result for nonautomonous functionals with standard growth conditions in the direction of the Lipschitz regularity.
2020
31
1
191
210
Lipschitz continuity results for a class of obstacle problems / Benassi, C.; Caselli, M.. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1120-6330. - 31:1(2020), pp. 191-210. [10.4171/RLM/885]
Benassi, C.; Caselli, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1272299
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact