In this paper we propose a modified Lie-type spectral splitting approximation where the external potential is of quadratic type. It is proved that we can approximate the solution to a one-dimensional nonlinear Schrödinger equation by solving the linear problem and treating the nonlinear term separately, with a rigorous estimate of the remainder term. Furthermore, we show by means of numerical experiments that such a modified approximation is more efficient than the standard one.
Spectral splitting method for nonlinear Schrödinger equations with quadratic potential / Sacchetti, Andrea. - In: JOURNAL OF COMPUTATIONAL PHYSICS. - ISSN 0021-9991. - 459:(2022), pp. 1-18. [10.1016/j.jcp.2022.111154]
Spectral splitting method for nonlinear Schrödinger equations with quadratic potential
Andrea Sacchetti
2022
Abstract
In this paper we propose a modified Lie-type spectral splitting approximation where the external potential is of quadratic type. It is proved that we can approximate the solution to a one-dimensional nonlinear Schrödinger equation by solving the linear problem and treating the nonlinear term separately, with a rigorous estimate of the remainder term. Furthermore, we show by means of numerical experiments that such a modified approximation is more efficient than the standard one.File | Dimensione | Formato | |
---|---|---|---|
2110.14334.pdf
Open access
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
432.64 kB
Formato
Adobe PDF
|
432.64 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris