In this paper we propose a modified Lie-type spectral splitting approximation where the external potential is of quadratic type. It is proved that we can approximate the solution to a one-dimensional nonlinear Schrödinger equation by solving the linear problem and treating the nonlinear term separately, with a rigorous estimate of the remainder term. Furthermore, we show by means of numerical experiments that such a modified approximation is more efficient than the standard one.

Spectral splitting method for nonlinear Schrödinger equations with quadratic potential / Sacchetti, Andrea. - In: JOURNAL OF COMPUTATIONAL PHYSICS. - ISSN 0021-9991. - 459:(2022), pp. 1-18. [10.1016/j.jcp.2022.111154]

Spectral splitting method for nonlinear Schrödinger equations with quadratic potential

Andrea Sacchetti
2022

Abstract

In this paper we propose a modified Lie-type spectral splitting approximation where the external potential is of quadratic type. It is proved that we can approximate the solution to a one-dimensional nonlinear Schrödinger equation by solving the linear problem and treating the nonlinear term separately, with a rigorous estimate of the remainder term. Furthermore, we show by means of numerical experiments that such a modified approximation is more efficient than the standard one.
2022
21-mar-2022
459
1
18
Spectral splitting method for nonlinear Schrödinger equations with quadratic potential / Sacchetti, Andrea. - In: JOURNAL OF COMPUTATIONAL PHYSICS. - ISSN 0021-9991. - 459:(2022), pp. 1-18. [10.1016/j.jcp.2022.111154]
Sacchetti, Andrea
File in questo prodotto:
File Dimensione Formato  
2110.14334.pdf

Open access

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 432.64 kB
Formato Adobe PDF
432.64 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1271077
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact