The adverse effects of engineered nanomaterials (ENM) in marine environments have recently attracted great attention although their effects on marine benthic organisms such as foraminifera are still largely overlooked. Here we document the effects of three negatively charged ENM, different in size and composition, titanium dioxide (TiO2), polystyrene (PS) and silicon dioxide (SiO2), on a microbial eukaryote (the benthic foraminifera Ammonia parkinsoniana) using multiple approaches. This research clearly shows the presence, within the foraminiferal cytoplasm, of metallic (Ti) and organic (PS) ENM that promote physiological stress. Specifically, marked increases in the accumulation of neutral lipids and enhanced reactive oxygen species production occurred in ENM-treated specimens regardless of ENM type. This study indicates that ENM represent ecotoxicological risks for this microbial eukaryote and presents a new model for the neglected marine benthos by which to assess natural exposure scenarios.
Nanoparticle-Biological Interactions in a Marine Benthic Foraminifer / Ciacci, C.; Grimmelpont, M. V.; Corsi, I.; Bergami, E.; Curzi, D.; Burini, D.; Bouchet, V. M. P.; Ambrogini, P.; Gobbi, P.; Ujiie, Y.; Ishitani, Y.; Coccioni, R.; Bernhard, J. M.; Frontalini, F.. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 9:1(2019), pp. N/A-N/A. [10.1038/s41598-019-56037-2]
Nanoparticle-Biological Interactions in a Marine Benthic Foraminifer
Bergami, E.;
2019
Abstract
The adverse effects of engineered nanomaterials (ENM) in marine environments have recently attracted great attention although their effects on marine benthic organisms such as foraminifera are still largely overlooked. Here we document the effects of three negatively charged ENM, different in size and composition, titanium dioxide (TiO2), polystyrene (PS) and silicon dioxide (SiO2), on a microbial eukaryote (the benthic foraminifera Ammonia parkinsoniana) using multiple approaches. This research clearly shows the presence, within the foraminiferal cytoplasm, of metallic (Ti) and organic (PS) ENM that promote physiological stress. Specifically, marked increases in the accumulation of neutral lipids and enhanced reactive oxygen species production occurred in ENM-treated specimens regardless of ENM type. This study indicates that ENM represent ecotoxicological risks for this microbial eukaryote and presents a new model for the neglected marine benthos by which to assess natural exposure scenarios.File | Dimensione | Formato | |
---|---|---|---|
corsi26.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
1.75 MB
Formato
Adobe PDF
|
1.75 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris