Plastic pollution has been globally recognized as a critical issue for marine ecosystems and nanoplastics constitute one of the last unexplored areas to understand the magnitude of this threat. However, current difficulties in sampling and identifying nano-sized debris make hard to assess their occurrence in marine environment. Polystyrene nanoparticles (PS NPs) are largely used as nanoplastics in ecotoxicological studies and although acute exposures have been already investigated, long-term toxicity on marine organisms is unknown. Our study aims at evaluating the effects of 40 nm PS anionic carboxylated (PS-COOH) and 50 nm cationic amino-modified (PS-NH2) NPs in two planktonic species, the green microalga Dunaliella tertiolecta and the brine shrimp Artemia franciscana, respectively prey and predator. PS NP behaviour in exposure media was determined through DLS, while their toxicity to microalgae and brine shrimps evaluated through 72 h growth inhibition test and 14 d long-term toxicity test respectively. Moreover, the expression of target genes (i.e. clap and cstb), having a role in brine shrimp larval growth and molting, was measured in 48 h brine shrimp larvae. A different behaviour of the two PS NPs in exposure media as well as diverse toxicity to the two planktonic species was observed. PS-COOH formed micro-scale aggregates (Z-Average > 1 μm) and did not affect the growth of microalgae up to 50 μg/ml or that of brine shrimps up to 10 μg/ml. However, these negatively charged NPs were adsorbed on microalgae and accumulated (and excreted) in brine shrimps, suggesting a potential trophic transfer from prey to predator. On the opposite, PS-NH2-formed nano-scale aggregates (Z-Average 

Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana / Bergami, E.; Pugnalini, S.; Vannuccini, M. L.; Manfra, L.; Faleri, C.; Savorelli, F.; Dawson, K. A.; Corsi, I.. - In: AQUATIC TOXICOLOGY. - ISSN 0166-445X. - 189:(2017), pp. 159-169. [10.1016/j.aquatox.2017.06.008]

Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana

Bergami, E.;
2017

Abstract

Plastic pollution has been globally recognized as a critical issue for marine ecosystems and nanoplastics constitute one of the last unexplored areas to understand the magnitude of this threat. However, current difficulties in sampling and identifying nano-sized debris make hard to assess their occurrence in marine environment. Polystyrene nanoparticles (PS NPs) are largely used as nanoplastics in ecotoxicological studies and although acute exposures have been already investigated, long-term toxicity on marine organisms is unknown. Our study aims at evaluating the effects of 40 nm PS anionic carboxylated (PS-COOH) and 50 nm cationic amino-modified (PS-NH2) NPs in two planktonic species, the green microalga Dunaliella tertiolecta and the brine shrimp Artemia franciscana, respectively prey and predator. PS NP behaviour in exposure media was determined through DLS, while their toxicity to microalgae and brine shrimps evaluated through 72 h growth inhibition test and 14 d long-term toxicity test respectively. Moreover, the expression of target genes (i.e. clap and cstb), having a role in brine shrimp larval growth and molting, was measured in 48 h brine shrimp larvae. A different behaviour of the two PS NPs in exposure media as well as diverse toxicity to the two planktonic species was observed. PS-COOH formed micro-scale aggregates (Z-Average > 1 μm) and did not affect the growth of microalgae up to 50 μg/ml or that of brine shrimps up to 10 μg/ml. However, these negatively charged NPs were adsorbed on microalgae and accumulated (and excreted) in brine shrimps, suggesting a potential trophic transfer from prey to predator. On the opposite, PS-NH2-formed nano-scale aggregates (Z-Average 
2017
189
159
169
Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana / Bergami, E.; Pugnalini, S.; Vannuccini, M. L.; Manfra, L.; Faleri, C.; Savorelli, F.; Dawson, K. A.; Corsi, I.. - In: AQUATIC TOXICOLOGY. - ISSN 0166-445X. - 189:(2017), pp. 159-169. [10.1016/j.aquatox.2017.06.008]
Bergami, E.; Pugnalini, S.; Vannuccini, M. L.; Manfra, L.; Faleri, C.; Savorelli, F.; Dawson, K. A.; Corsi, I.
File in questo prodotto:
File Dimensione Formato  
long.pdf

Accesso riservato

Dimensione 1.91 MB
Formato Adobe PDF
1.91 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1270863
Citazioni
  • ???jsp.display-item.citation.pmc??? 25
  • Scopus 348
  • ???jsp.display-item.citation.isi??? 308
social impact