There is evidence and serious concern that microplastics have reached the most remote regions of the planet, but how far have they travelled in terrestrial ecosystems? This study presents the first field-based evidence of plastic ingestion by a common and central component of Antarctic terrestrial food webs, the collembolan Cryptopygus antarcticus. A large piece of polystyrene (PS) foam (34 × 31 × 5 cm) covered by microalgae, moss, lichens and microfauna was found in a fellfield along the shores of the Fildes Peninsula (King George Island). The application of an improved enzymatic digestion coupled with Fourier transform infrared microscopy (µ-FTIR), unequivocally detected traces of PS (less than 100 µm) in the gut of the collembolans associated with the PS foam and documented their ability to ingest plastic. Plastics are thus entering the short Antarctic terrestrial food webs and represent a new potential stressor to polar ecosystems already facing climate change and increasing human activities. Future research should explore the effects of plastics on the composition, structure and functions of polar terrestrial biota.
Plastics everywhere: first evidence of polystyrene fragments inside the common Antarctic collembolan Cryptopygus antarcticus / Bergami, E.; Rota, E.; Caruso, T.; Birarda, G.; Vaccari, L.; Corsi, I.. - In: BIOLOGY LETTERS. - ISSN 1744-957X. - 16:6(2020), p. 20200093. [10.1098/rsbl.2020.0093]
Plastics everywhere: first evidence of polystyrene fragments inside the common Antarctic collembolan Cryptopygus antarcticus
Bergami, E.;
2020
Abstract
There is evidence and serious concern that microplastics have reached the most remote regions of the planet, but how far have they travelled in terrestrial ecosystems? This study presents the first field-based evidence of plastic ingestion by a common and central component of Antarctic terrestrial food webs, the collembolan Cryptopygus antarcticus. A large piece of polystyrene (PS) foam (34 × 31 × 5 cm) covered by microalgae, moss, lichens and microfauna was found in a fellfield along the shores of the Fildes Peninsula (King George Island). The application of an improved enzymatic digestion coupled with Fourier transform infrared microscopy (µ-FTIR), unequivocally detected traces of PS (less than 100 µm) in the gut of the collembolans associated with the PS foam and documented their ability to ingest plastic. Plastics are thus entering the short Antarctic terrestrial food webs and represent a new potential stressor to polar ecosystems already facing climate change and increasing human activities. Future research should explore the effects of plastics on the composition, structure and functions of polar terrestrial biota.File | Dimensione | Formato | |
---|---|---|---|
corsi39.pdf
Accesso riservato
Dimensione
679.01 kB
Formato
Adobe PDF
|
679.01 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris