Bayesian disease mapping, yet if undeniably useful to describe variation in risk over time and space, comes with the hurdle of prior elicitation on hard-to-interpret precision parameters. We introduce a reparametrized version of the popular spatio-temporal interaction models, based on Kronecker product intrinsic Gaussian Markov Random Fields, that we name variance partitioning (VP) model. The VP model includes a mixing parameter that balances the contribution of the main and interaction effects to the total (generalized) variance and enhances interpretability. The use of a penalized complexity prior on the mixing parameter aids in coding any prior information in a intuitive way. We illustrate the advantages of the VP model on two case studies.
Franco Villoria, M., M., Ventrucci e H., Rue. "Variance partitioning in spatio-temporal disease mapping models" Working paper, 2021.
Variance partitioning in spatio-temporal disease mapping models
M. Franco Villoria;
2021
Abstract
Bayesian disease mapping, yet if undeniably useful to describe variation in risk over time and space, comes with the hurdle of prior elicitation on hard-to-interpret precision parameters. We introduce a reparametrized version of the popular spatio-temporal interaction models, based on Kronecker product intrinsic Gaussian Markov Random Fields, that we name variance partitioning (VP) model. The VP model includes a mixing parameter that balances the contribution of the main and interaction effects to the total (generalized) variance and enhances interpretability. The use of a penalized complexity prior on the mixing parameter aids in coding any prior information in a intuitive way. We illustrate the advantages of the VP model on two case studies.File | Dimensione | Formato | |
---|---|---|---|
arxiv2109.13374.pdf
Open access
Tipologia:
AO - Versione originale dell'autore proposta per la pubblicazione
Dimensione
1.68 MB
Formato
Adobe PDF
|
1.68 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris