Motorsport is almost as old as the motor vehicle itself. Since the beginning it has been used as a proving ground for new technology and as a means of marketing for automotive brands. As time has gone by however, road and race cars would appear to have diverged. In the years leading up to 2014, there was a concerted effort to make Formula 1 more road relevant. Formula 1 effectively became a competition to minimise specific fuel consumption. These engines are now among the most efficient spark ignition units on the planet, hence evaluating what technologies could potentially be transferred to other applications has obvious appeal. In addition to potential for technology transfer, the racing environment is also intriguing due to rapid development cycles. As model development times are also coming under increasing pressure in the road car world, perhaps elements of racing development methodology can inspire new approaches to shortening time-to-market of passenger car vehicles. The aim of this work is therefore to examine which technologies and methodologies from modern race-car engineering can be applied as they are, or with opportune modifications, to high performance road vehicles. Firstly, the differing objectives and constraints of road versus race development are considered. A significant common objective is full load performance. A significant constraint, present only for road cars, is emissions legislation. Prechamber ignition systems are identified as a promising means of meeting performance targets for both applications, although their introduction in road cars is shown to be more problematic due to the additional constraints. A new prechamber concept engine is introduced and experimental results are presented. Whichever combustion concept is chosen, a key performance limitation is knock. As this is a topic that has been studied almost since the birth of the automobile, there is a rich vein of literature available. A detailed literature survey is presented covering a century of activity in the field. Despite all the existing contributions, a gap is identified between typical experimental results interpretation and complex “first principles” CFD models. A simple acoustic model of engine combustion chambers is proposed and constructed in CFD. This is benchmarked against historic literature and modern engine data. It is shown to help understand what occurs between autoignition events and cylinder pressure measurements. Opportunities to use such modelling for knock location identification, with a reduced number of sensors in comparison to standard techniques, are also presented. New knock calibration and control techniques are also proposed. Fuel has historically been a key area of knock research. Formula 1 features tailored fuels for each engine manufacturer. Although this is not possible for road cars, a similar fuel development workflow using Rapid Compression Machine and Shock Tube facilities is demonstrated to produce a surrogate version of a full boiling range high octane gasoline. This is shown to perform very similarly to the reference blend during on-engine testing. Finally, accelerated development through use of powertrain facilities for whole vehicle testing and cyclic optimisation of injection parameters is discussed. Through the activity presented, it is shown that despite the apparent divergence in road and race car technology, much of the learning taken from a racing environment can be harnessed for modern passenger cars. New approaches which can aid in development of both powertrain types are also demonstrated. In what some consider the last days of the internal combustion engine, it is shown that there is still much potential left to explore.

Gli sport automobilistici nascono insieme ai veicoli stessi. Sin dall’inizio sono un terreno di prova ideale per le nuove tecnologie e un modo per le case automobilistiche di promuoversi. Col passare del tempo, macchine da corsa e macchine stradali sembra abbiano intrapreso direzioni divergenti. Negli anni che portano al 2014, è stato fatto un ingente sforzo per rendere la Formula 1 più rilevante verso la tecnologia stradale. Un obiettivo è diventato minimizzare il consumo specifico di carburante. Oggigiorno i motori F1 sono tra i più efficienti al mondo. Risulta evidentemente interessante valutare quali tecnologie potrebbero essere trasferite ad altre applicazioni. Oltre alla potenziale tecnologia sfruttabile in altri settori, l’ambiente delle corse è anche stimolante per la rapidità dei cicli di sviluppo. Dal momento che i tempi dei modelli si fanno via via più stringenti anche per il mondo della strada, forse alcuni elementi metodologici possono essere fonte di ispirazione. Lo scopo di questo lavoro è quindi vagliare se tecnologie e metodologie derivate dalle moderne auto di gara possano essere applicate ai veicoli stradali ad alta prestazione. In primo luogo sono stati considerati i differenti obbiettivi e vincoli legati a veicoli stradali e veicoli da corsa. Un obbiettivo comune è la performance a pieno carico, mentre un vincolo significativo presente esclusivamente per i veicoli stradali, è la legislazione in termini di emissioni. I sistemi di combustione con precamera sono riconosciuti come mezzi promettenti per far convergere gli obbiettivi di prestazione di entrambe le applicazioni, anche se la loro introduzione sulle macchine stradali ha mostrato maggiore problematicità. Vengono qui presentati un nuovo concetto di motore a precamera in ottica stradale e i risultati sperimentali ottenuti. Qualsiasi concetto di combustione si scelga, una limitazione chiave nelle prestazioni rimane la detonazione. Viene presentato uno studio di letteratura che copre un secolo di attività in questo campo. Nonostante tutti i contributi esistenti, esiste una lacuna tra l’interpretazione dei tipici risultati sperimentali e i complessi modelli “di principi primi” di combustione e fluidodinamica. Si propone un semplice modello acustico delle camere di combustione del motore reso in CFD. Si mostra come questo aiuti alla comprensione di cosa succede tra l'autoaccensione e le misurazioni della pressione dei cilindri. Si propongono inoltre altre modalità di utilizzo di tali modelli per l’identificazione dei punti di detonazione, con un ridotto numero di sensori rispetto alle tecniche standard. Vengono proposti anche nuovi indici di detonazione e tecniche di controllo. Il combustibile è stato storicamente un’area chiave nelle ricerche legate alla detonazione. La Formula 1 è caratterizzata dalla possibilità di utilizzare carburanti messi a punto su misura per ogni costruttore di motori. Pur non essendo possibile farlo per i motori stradali, è stato dimostrato che, utilizzando strumenti di ricerca identici, è possibile produrre un carburante surrogato di una benzina commerciale ad alto numero di ottano. Questa mostra una performance molto simile a quella commerciale di riferimento nei test sul motore. Infine, si discute dello sviluppo accelerato attraverso l’uso delle strutture moderne per testare interi veicoli e metodi rapidi per la ottimizzazione ciclica dei parametri di iniezione. Attraverso l’attività presentata, si mostra come, nonostante l’apparente divergenza tra la tecnologia stradale e quella di gara, molte delle cose apprese proprio grazie alle corse possono essere sfruttate nell’ambito dei moderni veicoli per passeggeri. Sono anche proposte nuove tecniche che possono aiutare nello sviluppo di entrambi i gruppi propulsori. In quello che alcuni considerano come il canto del cigno dei motori a combustione interna, si dimostra come ci sia ancora molto potenziale da esplorare.

Dalle corse alla strada: indagini sulla detonazione dalla Formula 1 alle auto da strada ad alta prestazione / Daire James Corrigan , 2022 Mar 14. 34. ciclo, Anno Accademico 2020/2021.

Dalle corse alla strada: indagini sulla detonazione dalla Formula 1 alle auto da strada ad alta prestazione

CORRIGAN, DAIRE JAMES
2022

Abstract

Motorsport is almost as old as the motor vehicle itself. Since the beginning it has been used as a proving ground for new technology and as a means of marketing for automotive brands. As time has gone by however, road and race cars would appear to have diverged. In the years leading up to 2014, there was a concerted effort to make Formula 1 more road relevant. Formula 1 effectively became a competition to minimise specific fuel consumption. These engines are now among the most efficient spark ignition units on the planet, hence evaluating what technologies could potentially be transferred to other applications has obvious appeal. In addition to potential for technology transfer, the racing environment is also intriguing due to rapid development cycles. As model development times are also coming under increasing pressure in the road car world, perhaps elements of racing development methodology can inspire new approaches to shortening time-to-market of passenger car vehicles. The aim of this work is therefore to examine which technologies and methodologies from modern race-car engineering can be applied as they are, or with opportune modifications, to high performance road vehicles. Firstly, the differing objectives and constraints of road versus race development are considered. A significant common objective is full load performance. A significant constraint, present only for road cars, is emissions legislation. Prechamber ignition systems are identified as a promising means of meeting performance targets for both applications, although their introduction in road cars is shown to be more problematic due to the additional constraints. A new prechamber concept engine is introduced and experimental results are presented. Whichever combustion concept is chosen, a key performance limitation is knock. As this is a topic that has been studied almost since the birth of the automobile, there is a rich vein of literature available. A detailed literature survey is presented covering a century of activity in the field. Despite all the existing contributions, a gap is identified between typical experimental results interpretation and complex “first principles” CFD models. A simple acoustic model of engine combustion chambers is proposed and constructed in CFD. This is benchmarked against historic literature and modern engine data. It is shown to help understand what occurs between autoignition events and cylinder pressure measurements. Opportunities to use such modelling for knock location identification, with a reduced number of sensors in comparison to standard techniques, are also presented. New knock calibration and control techniques are also proposed. Fuel has historically been a key area of knock research. Formula 1 features tailored fuels for each engine manufacturer. Although this is not possible for road cars, a similar fuel development workflow using Rapid Compression Machine and Shock Tube facilities is demonstrated to produce a surrogate version of a full boiling range high octane gasoline. This is shown to perform very similarly to the reference blend during on-engine testing. Finally, accelerated development through use of powertrain facilities for whole vehicle testing and cyclic optimisation of injection parameters is discussed. Through the activity presented, it is shown that despite the apparent divergence in road and race car technology, much of the learning taken from a racing environment can be harnessed for modern passenger cars. New approaches which can aid in development of both powertrain types are also demonstrated. In what some consider the last days of the internal combustion engine, it is shown that there is still much potential left to explore.
Race to Road: Investigations on Knock from Formula 1 to High Performance Road Cars
14-mar-2022
FONTANESI, Stefano
D'ADAMO, Alessandro
File in questo prodotto:
File Dimensione Formato  
thesisFinalNoLogo.pdf

embargo fino al 13/03/2025

Descrizione: Tesi Definitiva di CORRIGAN, Daire James
Tipologia: Tesi di dottorato
Dimensione 45.02 MB
Formato Adobe PDF
45.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1270085
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact