The aim of this thesis is to describe the workflow and the procedures to be followed in order to perform highly complex analysis in motorsport through the use of computational fluid dynamics (CFD). The activity has been developed at the “Enzo Ferrari” Engineering Department of Modena and Reggio Emilia University. Focusing on the automotive field, and particularly on high performance car applications, Motor sport world demands reliable and robust responses in a very limited timeframe which is not always pursued by experimental investigations. In order to be competitive, it’s mandatory to look after every single detail of the performance. However, the term “performance” covers a wide range of situations and applications which makes the achievement of competitiveness a challenging task. CFD is therefore a fundamental tool which comes in handy in this perspective in order to overcome the limitations of experimental studies in terms of response times and costs and to gain a far broader in-depth insight into the studied processes. From the above considerations, in this work two main chapters are analyzed in this perspective, both making use of CFD and compared to the experimental outcomes. The first one proposes a methodology to perform sloshing analysis of lubricant oil tank for high-performance sports under racetrack maneuvers. The latter is a detailed investigation on the turbulent combustion which takes place in turbulent jet ignition (TJI) systems widely adopted in motor sport. Although the described chapters are not intended to cover the multitude of applications available in motor sport, it is purposely reported in this thesis to show a typical modus operandi which can be worthwhile in this perspective. Lubricant tanks designed for high-performance sports car are usually fed by a mixture of oil and air which makes Volume of Fluid (VoF) models unsuitable for this kind of simulations. Hence, a different approach base on a Eulerian Multi-Phase (EMP) model is investigated and adopted. EMP accounts for interaction between gaseous and liquid phases, accounting for mixing and separation which largely affect tank and lubricating circuit performance in high-performance sports car applications, also allowing a massive reduction of computational time compared to VoF by reducing numerical constraints on mesh size and time-step. Turbulent Jet Ignition is seen as one of the most promising strategies to achieve stable lean-burn operation in modern spark-ignition engines. A nearly stoichiometric mixture is ignited in a small-volume pre-chamber, following which multiple highly reactive hot jets are discharged promoting rapid combustion in the main chamber. In the present work, a detailed computational investigation on the combustion regime of premixed rich propane/air mixture in a quiescent pre-chamber is performed to study the characteristics of the jet flame without the uncertainties in turbulent and mixing conditions typical of real-engine operations. The results show a good alignment with the available experimental data in terms of both combustion duration and jet phasing, offering a renewed procedure for combustion simulations under low Damköhler numbers.

La presente tesi si pone come obiettivo la descrizione del workflow e delle procedure che possono essere seguite per analisi ad alta complessità nel motor sport attraverso l’uso di simulazioni fluidodinamiche CFD (Computational Fluid Dynamics). Focalizzandosi sull’automotive, e in particolare su applicazioni ad elevata performance, il mondo del motor sport richiede feedback affidabili e robusti in lassi di tempo molto limitati, spesso non accordabili con le investigazioni sperimentali. Per essere competitivi, è fondamentale tenere in conto tutti gli aspetti della performance. Peraltro, il termine “performance” copre un range piuttosto ampio di situazioni e applicazioni che rendono il raggiungimento della competitività un obiettivo arduo. In quest’ottica, la CFD è pertanto uno strumento fondamentale che viene in aiuto per superare i limiti degli studi sperimentali in termini di costi, tempi di risposta e ottenendo allo stesso tempo una conoscenza più approfondita dei fenomeni coinvolti. In questo lavoro vengono analizzate due macro-tematiche, entrambe confrontate con dati e risultati sperimentali. Nella prima parte viene proposta una metodologia per effettuare analisi di sloshing in serbatoi-olio per veicoli ad elevata performance sottoposti a manovre di gara. La seconda tematica è un’analisi dettagliata della combustione turbolenta che interessa applicazioni Turbulent Jet Ignition (TJI) nei moderni motori con pre-camera, il cui utilizzo è molto diffuso nel motor sport. Sebbene la tesi non sia destinata a ricoprire la moltitudine di applicazioni che interessano questo settore, è intenzionalmente descritto il tipico modus operandi che può tornare utile in quest’ottica. I serbatoi-olio progettati per vetture sportive ad alta performance sono normalmente alimentati da una miscela omogenea di aria e olio che rende inadatto l’utilizzo del modello “Volume of Fluid” (VoF). Pertanto, viene investigato e adottato un approccio differente basato sul modello “Eulerian Multi-Phase” (EMP). Questo modello risolve l’interazione tra fase gassosa e liquida, tenendo in conto anche dei complessi fenomeni di miscelamento e separazione che hanno luogo nei serbatoi e nei circuiti di lubrificazione di vetture sportive ad elevata performance e permettendo, allo stesso tempo, una riduzione massiva del tempo computazionale rispetto al VoF, non avendo gli stessi limiti numerici sulla dimensione di griglia e sul time-step. La metodologia è inizialmente validata su dati sperimentali in un serbatoio semplificato avente paratie interne e sottoposto a oscillazioni di beccheggio condiviso in letteratura. L’efficacia della metodologia è nuovamente validata su misure a banco di serbatoi-olio attualmente in produzione su vetture ad elevata performance. Dapprima è effettuata un’applicazione statica di un serbatoio-olio. Infine, è analizzata un’applicazione dinamica di un serbatoio-olio sottoposto alle accelerazioni inerziali di gara. Il Sistema TJI è considerato oggi una delle strategie più promettenti al fine di ottenere combustioni stabili in miscele magre nei moderni motori ad accensione comandata. Una piccola porzione di miscela, normalmente vicina alle condizioni stechiometriche o ricca, è accesa all’interno della pre-camera. La combustione si propaga nella camera principale attraverso diversi getti caldi, altamente reattivi e turbolenti che rendono possibile una combustione rapida e stabile anche in condizioni globalmente magre. In questa tesi viene descritta un’analisi dettagliata del regime di combustione di una miscela omogenea aria/propano in una pre-camera quiescente, al fine di studiare le caratteristiche della propagazione della fiamma senza le incertezze sulla turbolenza e sulla stratificazione tipiche di condizioni real-engine.

Sviluppo di metodologie per l'analisi fluidodinamica di problematiche ad elevata complessità di interesse motoristico / Mattia Olcuire , 2022 Mar 14. 34. ciclo, Anno Accademico 2020/2021.

Sviluppo di metodologie per l'analisi fluidodinamica di problematiche ad elevata complessità di interesse motoristico

OLCUIRE, MATTIA
2022

Abstract

The aim of this thesis is to describe the workflow and the procedures to be followed in order to perform highly complex analysis in motorsport through the use of computational fluid dynamics (CFD). The activity has been developed at the “Enzo Ferrari” Engineering Department of Modena and Reggio Emilia University. Focusing on the automotive field, and particularly on high performance car applications, Motor sport world demands reliable and robust responses in a very limited timeframe which is not always pursued by experimental investigations. In order to be competitive, it’s mandatory to look after every single detail of the performance. However, the term “performance” covers a wide range of situations and applications which makes the achievement of competitiveness a challenging task. CFD is therefore a fundamental tool which comes in handy in this perspective in order to overcome the limitations of experimental studies in terms of response times and costs and to gain a far broader in-depth insight into the studied processes. From the above considerations, in this work two main chapters are analyzed in this perspective, both making use of CFD and compared to the experimental outcomes. The first one proposes a methodology to perform sloshing analysis of lubricant oil tank for high-performance sports under racetrack maneuvers. The latter is a detailed investigation on the turbulent combustion which takes place in turbulent jet ignition (TJI) systems widely adopted in motor sport. Although the described chapters are not intended to cover the multitude of applications available in motor sport, it is purposely reported in this thesis to show a typical modus operandi which can be worthwhile in this perspective. Lubricant tanks designed for high-performance sports car are usually fed by a mixture of oil and air which makes Volume of Fluid (VoF) models unsuitable for this kind of simulations. Hence, a different approach base on a Eulerian Multi-Phase (EMP) model is investigated and adopted. EMP accounts for interaction between gaseous and liquid phases, accounting for mixing and separation which largely affect tank and lubricating circuit performance in high-performance sports car applications, also allowing a massive reduction of computational time compared to VoF by reducing numerical constraints on mesh size and time-step. Turbulent Jet Ignition is seen as one of the most promising strategies to achieve stable lean-burn operation in modern spark-ignition engines. A nearly stoichiometric mixture is ignited in a small-volume pre-chamber, following which multiple highly reactive hot jets are discharged promoting rapid combustion in the main chamber. In the present work, a detailed computational investigation on the combustion regime of premixed rich propane/air mixture in a quiescent pre-chamber is performed to study the characteristics of the jet flame without the uncertainties in turbulent and mixing conditions typical of real-engine operations. The results show a good alignment with the available experimental data in terms of both combustion duration and jet phasing, offering a renewed procedure for combustion simulations under low Damköhler numbers.
Development of methodologies for highly complex fluid dynamics analyses of interest in motor sport applications
14-mar-2022
D'ADAMO, Alessandro
FONTANESI, Stefano
File in questo prodotto:
File Dimensione Formato  
PhD_Thesis_Olcuire_REVfinal.pdf

embargo fino al 13/03/2025

Descrizione: Tesi definitiva Olcuire Mattia
Tipologia: Tesi di dottorato
Dimensione 34.87 MB
Formato Adobe PDF
34.87 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1270084
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact